Without this patch computeConstantDifference returns None for cases like
these:
computeConstantDifference(%x, %x)
computeConstantDifference({%x,+,16}, {%x,+,16})
Differential Revision: https://reviews.llvm.org/D65474
llvm-svn: 368193
The unit tests in BasicAliasAnalysisTest use the alias analysis API
directly and do not call setAAResults to initalize AAR. This gives a
valgrind error "Conditional Jump depends on unitialized variable".
On most buildbots the variable is nullptr, but in some cases it can be
non nullptr leading to seemingly random failures.
These tests were disabled in r366986. With the initialization they can be
enabled again.
Fixes PR42719
Differential Revision: https://reviews.llvm.org/D65568
llvm-svn: 367662
Summary:
This is the first patch for the loop guard. We introduced
getLoopGuardBranch() and isGuarded().
This currently only works on simplified loop, as it requires a preheader
and a latch to identify the guard.
It will work on loops of the form:
/// GuardBB:
/// br cond1, Preheader, ExitSucc <== GuardBranch
/// Preheader:
/// br Header
/// Header:
/// ...
/// br Latch
/// Latch:
/// br cond2, Header, ExitBlock
/// ExitBlock:
/// br ExitSucc
/// ExitSucc:
Prior discussions leading upto the decision to introduce the loop guard
API: http://lists.llvm.org/pipermail/llvm-dev/2019-May/132607.html
Reviewer: reames, kbarton, hfinkel, jdoerfert, Meinersbur, dmgreen
Reviewed By: reames
Subscribers: wuzish, hiraditya, jsji, llvm-commits, bmahjour, etiotto
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D63885
llvm-svn: 367033
These tests are breaking three independent upstream buildbots (as well
downstream ones). These breakages have appeared mysteriously,
consistently, and during different revisions. Sadly, none of
{ASAN,TSAN,MSAN,UBSAN} flag anything, so the cause here is nonobvious.
Until we've figured this out, it seems best to disable these tests
entirely, so that the affected bots don't remain silent about any other,
unrelated failures.
Please see PR42719 for more information.
llvm-svn: 366986
It is possible that exit block has two predecessors and one of them is a latch
block while another is not.
Current algorithm is based on the assumption that all exits are dedicated
and therefore we can check only first predecessor of loop exit to find all unique
exits.
However if we do not consider latch block and it is first predecessor of some
exit then this exit will be found.
Regression test is added.
As a side effect of algorithm re-writing, the restriction that all exits are dedicated
is eliminated.
Reviewers: reames, fhahn, efriedma
Reviewed By: efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D64787
llvm-svn: 366294
Extract the code from LoopUnrollRuntime into utility function to
re-use it in D63923.
Reviewers: reames, mkuper
Reviewed By: reames
Subscribers: fhahn, hiraditya, zzheng, dmgreen, llvm-commits
Differential Revision: https://reviews.llvm.org/D64548
llvm-svn: 366040
Summary: Vector of the same value with few undefs will sill be considered "Bytewise"
Reviewers: eugenis, pcc, jfb
Reviewed By: jfb
Subscribers: dexonsmith, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64031
llvm-svn: 365971
Summary:
This helps with more efficient use of memset for pattern initialization
From @pcc prototype for -ftrivial-auto-var-init=pattern optimizations
Binary size change on CTMark, (with -fuse-ld=lld -Wl,--icf=all, similar results with default linker options)
```
master patch diff
Os 8.238864e+05 8.238864e+05 0.0
O3 1.054797e+06 1.054797e+06 0.0
Os zero 8.292384e+05 8.292384e+05 0.0
O3 zero 1.062626e+06 1.062626e+06 0.0
Os pattern 8.579712e+05 8.338048e+05 -0.030299
O3 pattern 1.090502e+06 1.067574e+06 -0.020481
```
Zero vs Pattern on master
```
zero pattern diff
Os 8.292384e+05 8.579712e+05 0.036578
O3 1.062626e+06 1.090502e+06 0.025124
```
Zero vs Pattern with the patch
```
zero pattern diff
Os 8.292384e+05 8.338048e+05 0.003333
O3 1.062626e+06 1.067574e+06 0.003193
```
Reviewers: pcc, eugenis
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D63967
llvm-svn: 365858
Without this gcc 7.4.0 complains with
../unittests/Analysis/ValueTrackingTest.cpp:937:66: error: ISO C++11 requires at least one argument for the "..." in a variadic macro [-Werror]
::testing::ValuesIn(IsBytewiseValueTests));
^
llvm-svn: 365738
The `willreturn` function attribute guarantees that a function call will
come back to the call site if the call is also known not to throw.
Therefore, this attribute can be used in
`isGuaranteedToTransferExecutionToSuccessor`.
Patch by Hideto Ueno (@uenoku)
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63372
llvm-svn: 364580
We have the related getSplatValue() already in IR (see code just above the proposed addition).
But sometimes we only need to know that the value is a splat rather than capture the splatted
scalar value. Also, we have an isSplatValue() function already in SDAG.
Motivation - recent bugs that would potentially benefit from improved splat analysis in IR:
https://bugs.llvm.org/show_bug.cgi?id=37428https://bugs.llvm.org/show_bug.cgi?id=42174
Differential Revision: https://reviews.llvm.org/D63138
llvm-svn: 363106
When the object size argument is -1, no checking can be done, so calling the
_chk variant is unnecessary. We already did this for a bunch of these
functions.
rdar://50797197
Differential revision: https://reviews.llvm.org/D62358
llvm-svn: 362272
Summary:
This PR extends the loop object with more utilities to get loop bounds, step, induction variable, and guard branch. There already exists passes which try to obtain the loop induction variable in their own pass, e.g. loop interchange. It would be useful to have a common area to get these information. Moreover, loop fusion (https://reviews.llvm.org/D55851) is planning to use getGuard() to extend the kind of loops it is able to fuse, e.g. rotated loop with non-constant upper bound, which would have a loop guard.
/// Example:
/// for (int i = lb; i < ub; i+=step)
/// <loop body>
/// --- pseudo LLVMIR ---
/// beforeloop:
/// guardcmp = (lb < ub)
/// if (guardcmp) goto preheader; else goto afterloop
/// preheader:
/// loop:
/// i1 = phi[{lb, preheader}, {i2, latch}]
/// <loop body>
/// i2 = i1 + step
/// latch:
/// cmp = (i2 < ub)
/// if (cmp) goto loop
/// exit:
/// afterloop:
///
/// getBounds
/// getInitialIVValue --> lb
/// getStepInst --> i2 = i1 + step
/// getStepValue --> step
/// getFinalIVValue --> ub
/// getCanonicalPredicate --> '<'
/// getDirection --> Increasing
/// getGuard --> if (guardcmp) goto loop; else goto afterloop
/// getInductionVariable --> i1
/// getAuxiliaryInductionVariable --> {i1}
/// isCanonical --> false
Committed on behalf of @Whitney (Whitney Tsang).
Reviewers: kbarton, hfinkel, dmgreen, Meinersbur, jdoerfert, syzaara, fhahn
Reviewed By: kbarton
Subscribers: tvvikram, bmahjour, etiotto, fhahn, jsji, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60565
llvm-svn: 361517
Summary:
It was supposed that Ref LazyCallGraph::Edge's were being inserted by
inlining, but that doesn't seem to be the case. Instead, it seems that
there was no test for a blockaddress Constant in an instruction that
referenced the function that contained the instruction. Ex:
```
define void @f() {
%1 = alloca i8*, align 8
2:
store i8* blockaddress(@f, %2), i8** %1, align 8
ret void
}
```
When iterating blockaddresses, do not add the function they refer to
back to the worklist if the blockaddress is referring to the contained
function (as opposed to an external function).
Because blockaddress has sligtly different semantics than GNU C's
address of labels, there are 3 cases that can occur with blockaddress,
where only 1 can happen in GNU C due to C's scoping rules:
* blockaddress is within the function it refers to (possible in GNU C).
* blockaddress is within a different function than the one it refers to
(not possible in GNU C).
* blockaddress is used in to declare a global (not possible in GNU C).
The second case is tested in:
```
$ ./llvm/build/unittests/Analysis/AnalysisTests \
--gtest_filter=LazyCallGraphTest.HandleBlockAddress
```
This patch adjusts the iteration of blockaddresses in
LazyCallGraph::visitReferences to not revisit the blockaddresses
function in the first case.
The Linux kernel contains code that's not semantically valid at -O0;
specifically code passed to asm goto. It requires that asm goto be
inline-able. This patch conservatively does not attempt to handle the
more general case of inlining blockaddresses that have non-callbr users
(pr/39560).
https://bugs.llvm.org/show_bug.cgi?id=39560https://bugs.llvm.org/show_bug.cgi?id=40722https://github.com/ClangBuiltLinux/linux/issues/6https://reviews.llvm.org/rL212077
Reviewers: jyknight, eli.friedman, chandlerc
Reviewed By: chandlerc
Subscribers: george.burgess.iv, nathanchance, mgorny, craig.topper, mengxu.gatech, void, mehdi_amini, E5ten, chandlerc, efriedma, eraman, hiraditya, haicheng, pirama, llvm-commits, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58260
llvm-svn: 361173
Summary:
Currently InductionBinOps are only saved for FP induction variables, the PR extends it with non FP induction variable, so user of IVDescriptors can query the InductionBinOps for integer induction variables.
The changes in hasUnsafeAlgebra() and getUnsafeAlgebraInst() are required for the existing LIT test cases to pass. As described in the comment of the two functions, one of the requirement to return true is it is a FP induction variable. The checks was not needed because InductionBinOp was not set on non FP cases before.
https://reviews.llvm.org/D60565 depends on the patch.
Committed on behalf of @Whitney (Whitney Tsang).
Reviewers: jdoerfert, kbarton, fhahn, hfinkel, dmgreen, Meinersbur
Reviewed By: jdoerfert
Subscribers: mgorny, hiraditya, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61329
llvm-svn: 360671
A block reachable from the entry block can't have any route to a block that's not reachable from the entry block (if it did, that route would make it reachable from the entry block). That is the intended performance optimization for isPotentiallyReachable. For the case where we ask whether an unreachable from entry block has a route to a reachable from entry block, we can't conclude one way or the other. Fix a bug where we claimed there could be no such route.
The fix in rL357425 ironically reintroduced the very bug it was fixing but only when a DominatorTree is provided. This fixes the remaining bug.
llvm-svn: 357734
The issue here is that we actually allow CGSCC passes to mutate IR (and
therefore invalidate analyses) outside of the current SCC. At a minimum,
we need to support mutating parent and ancestor SCCs to support the
ArgumentPromotion pass which rewrites all calls to a function.
However, the analysis invalidation infrastructure is heavily based
around not needing to invalidate the same IR-unit at multiple levels.
With Loop passes for example, they don't invalidate other Loops. So we
need to customize how we handle CGSCC invalidation. Doing this without
gratuitously re-running analyses is even harder. I've avoided most of
these by using an out-of-band preserved set to accumulate the cross-SCC
invalidation, but it still isn't perfect in the case of re-visiting the
same SCC repeatedly *but* it coming off the worklist. Unclear how
important this use case really is, but I wanted to call it out.
Another wrinkle is that in order for this to successfully propagate to
function analyses, we have to make sure we have a proxy from the SCC to
the Function level. That requires pre-creating the necessary proxy.
The motivating test case now works cleanly and is added for
ArgumentPromotion.
Thanks for the review from Philip and Wei!
Differential Revision: https://reviews.llvm.org/D59869
llvm-svn: 357137
Summary:
Adding contained caching to AliasAnalysis. BasicAA is currently the only one using it.
AA changes:
- This patch is pulling the caches from BasicAAResults to AAResults, meaning the getModRefInfo call benefits from the IsCapturedCache as well when in "batch mode".
- All AAResultBase implementations add the QueryInfo member to all APIs. AAResults APIs maintain wrapper APIs such that all alias()/getModRefInfo call sites are unchanged.
- AA now provides a BatchAAResults type as a wrapper to AAResults. It keeps the AAResults instance and a QueryInfo instantiated to batch mode. It delegates all work to the AAResults instance with the batched QueryInfo. More API wrappers may be needed in BatchAAResults; only the minimum needed is currently added.
MemorySSA changes:
- All walkers are now templated on the AA used (AliasAnalysis=AAResults or BatchAAResults).
- At build time, we optimize uses; now we create a local walker (lives only as long as OptimizeUses does) using BatchAAResults.
- All Walkers have an internal AA and only use that now, never the AA in MemorySSA. The Walkers receive the AA they will use when built.
- The walker we use for queries after the build is instantiated on AliasAnalysis and is built after building MemorySSA and setting AA.
- All static methods doing walking are now templated on AliasAnalysisType if they are used both during build and after. If used only during build, the method now only takes a BatchAAResults. If used only after build, the method now takes an AliasAnalysis.
Subscribers: sanjoy, arsenm, jvesely, nhaehnle, jlebar, george.burgess.iv, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59315
llvm-svn: 356783
We have two sources of known bits:
1. For adds leading ones of either operand are preserved. For sub
leading zeros of LHS and leading ones of RHS become leading zeros in
the result.
2. The saturating math is a select between add/sub and an all-ones/
zero value. As such we can carry out the add/sub known bits
calculation, and only preseve the known one/zero bits respectively.
Differential Revision: https://reviews.llvm.org/D58329
llvm-svn: 355223
Summary:
The original assumption for the insertDef method was that it would not
materialize Defs out of no-where, hence it will not insert phis needed
after inserting a Def.
However, when cloning an instruction (use case used in LICM), we do
materialize Defs "out of no-where". If the block receiving a Def has at
least one other Def, then no processing is needed. If the block just
received its first Def, we must check where Phi placement is needed.
The only new usage of insertDef is in LICM, hence the trigger for the bug.
But the original goal of the method also fails to apply for the move()
method. If we move a Def from the entry point of a diamond to either the
left or right blocks, then the merge block must add a phi.
While this usecase does not currently occur, or may be viewed as an
incorrect transformation, MSSA must behave corectly given the scenario.
Resolves PR40749 and PR40754.
Reviewers: george.burgess.iv
Subscribers: sanjoy, jlebar, Prazek, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58652
llvm-svn: 355040
Summary:
This patch separates two semantics of `applyUpdates`:
1. User provides an accurate CFG diff and the dominator tree is updated according to the difference of `the number of edge insertions` and `the number of edge deletions` to infer the status of an edge before and after the update.
2. User provides a sequence of hints. Updates mentioned in this sequence might never happened and even duplicated.
Logic changes:
Previously, removing invalid updates is considered a side-effect of deduplication and is not guaranteed to be reliable. To handle the second semantic, `applyUpdates` does validity checking before deduplication, which can cause updates that have already been applied to be submitted again. Then, different calls to `applyUpdates` might cause unintended consequences, for example,
```
DTU(Lazy) and Edge A->B exists.
1. DTU.applyUpdates({{Delete, A, B}, {Insert, A, B}}) // User expects these 2 updates result in a no-op, but {Insert, A, B} is queued
2. Remove A->B
3. DTU.applyUpdates({{Delete, A, B}}) // DTU cancels this update with {Insert, A, B} mentioned above together (Unintended)
```
But by restricting the precondition that updates of an edge need to be strictly ordered as how CFG changes were made, we can infer the initial status of this edge to resolve this issue.
Interface changes:
The second semantic of `applyUpdates` is separated to `applyUpdatesPermissive`.
These changes enable DTU(Lazy) to use the first semantic if needed, which is quite useful in `transforms/utils`.
Reviewers: kuhar, brzycki, dmgreen, grosser
Reviewed By: brzycki
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58170
llvm-svn: 354669
DomTreeUpdater depends on headers from Analysis, but is in IR. This is a
layering violation since Analysis depends on IR. Relocate this code from IR
to Analysis to fix the layering violation.
llvm-svn: 353265
This cleans up all GetElementPtr creation in LLVM to explicitly pass a
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57173
llvm-svn: 352913
This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57172
llvm-svn: 352911
Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc
doesn't choke on it, hopefully.
Original Message:
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352827
This reverts commit f47d6b38c7 (r352791).
Seems to run into compilation failures with GCC (but not clang, where
I tested it). Reverting while I investigate.
llvm-svn: 352800
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352791
This patch introduces the field `ExpressionSize` in SCEV. This field is
calculated only once on SCEV creation, and it represents the complexity of
this SCEV from arithmetical point of view (not from the point of the number
of actual different SCEV nodes that are used in the expression). Roughly
saying, it is the number of operands and operations symbols when we print this
SCEV.
A formal definition is following: if SCEV `X` has operands
`Op1`, `Op2`, ..., `OpN`,
then
Size(X) = 1 + Size(Op1) + Size(Op2) + ... + Size(OpN).
Size of SCEVConstant and SCEVUnknown is one.
Expression size may be used as a universal way to limit SCEV transformations
for huge SCEVs. Currently, we have a bunch of options that represents various
limits (such as recursion depth limit) that may not make any sense from the
point of view of a LLVM users who is not familiar with SCEV internals, and all
these different options pursue one goal. A more general rule that may
potentially allow us to get rid of this redundancy in options is "do not make
transformations with SCEVs of huge size". It can apply to all SCEV traversals
and transformations that may need to visit a SCEV node more than once, hence
they are prone to combinatorial explosions.
This patch only introduces SCEV sizes calculation as NFC, its utilization will
be introduced in follow-up patches.
Differential Revision: https://reviews.llvm.org/D35989
Reviewed By: reames
llvm-svn: 351725
As noted in https://bugs.llvm.org/show_bug.cgi?id=36651, the specialization for
isPodLike<std::pair<...>> did not match the expectation of
std::is_trivially_copyable which makes the memcpy optimization invalid.
This patch renames the llvm::isPodLike trait into llvm::is_trivially_copyable.
Unfortunately std::is_trivially_copyable is not portable across compiler / STL
versions. So a portable version is provided too.
Note that the following specialization were invalid:
std::pair<T0, T1>
llvm::Optional<T>
Tests have been added to assert that former specialization are respected by the
standard usage of llvm::is_trivially_copyable, and that when a decent version
of std::is_trivially_copyable is available, llvm::is_trivially_copyable is
compared to std::is_trivially_copyable.
As of this patch, llvm::Optional is no longer considered trivially copyable,
even if T is. This is to be fixed in a later patch, as it has impact on a
long-running bug (see r347004)
Note that GCC warns about this UB, but this got silented by https://reviews.llvm.org/D50296.
Differential Revision: https://reviews.llvm.org/D54472
llvm-svn: 351701
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
If the shift amount is known, we can determine the known bits of the
output based on the known bits of two inputs.
This is essentially the same functionality as implemented in D54869,
but for ValueTracking rather than InstCombine SimplifyDemandedBits.
Differential Revision: https://reviews.llvm.org/D55140
llvm-svn: 348091
Generalize the existing MatchSelectPatternTest class to also work
with other types of tests. This reduces the amount of boilerplate
necessary to write ValueTracking tests in general, and computeKnownBits
tests in particular.
The inherited convention is that the function must be @test and the
tested instruction %A.
Differential Revision: https://reviews.llvm.org/D55141
llvm-svn: 348043
Every Analysis pass has a get method that returns a reference of the Result of
the Analysis, for example, BlockFrequencyInfo
&BlockFrequencyInfoWrapperPass::getBFI(). I believe that
ProfileSummaryInfo::getPSI() is the only exception to that, as it was returning
a pointer.
Another change is renaming isHotBB and isColdBB to isHotBlock and isColdBlock,
respectively. Most methods use BB as the argument of variable names while
methods usually refer to Basic Blocks as Blocks, instead of BB. For example,
Function::getEntryBlock, Loop:getExitBlock, etc.
I also fixed one of the comments.
Patch by Rodrigo Caetano Rocha!
Differential Revision: https://reviews.llvm.org/D54669
llvm-svn: 347182
We have a lot of various bugs that are caused by misuse of SCEV (in particular in LV),
all of them can simply be described as "we ask SCEV to prove some fact on invalid IR".
Some of examples of those are PR36311, PR37221, PR39160.
The problem is that these failues manifest differently (what we saw was failure of various
asserts across SCEV, but there can also be miscompiles). This patch adds an assert into two
SCEV methods that strongly rely on correctness of the IR and are involved in known failues.
This will at least allow us to have a clear indication of what was wrong in this case.
This patch also fixes a unit test with incorrect IR that fails this verification.
Differential Revision: https://reviews.llvm.org/D52930
Reviewed By: fhahn
llvm-svn: 346389