* As discussed, fixes the ordering or (operands, results) -> (results, operands) in various `create` like methods.
* Fixes a syntax error in an ODS accessor method.
* Removes the linalg example in favor of a test case that exercises the same.
* Fixes FuncOp visibility to properly use None instead of the empty string and defaults it to None.
* Implements what was documented for requiring that trailing __init__ args `loc` and `ip` are keyword only.
* Adds a check to `InsertionPoint.insert` so that if attempting to insert past the terminator, an exception is raised telling you what to do instead. Previously, this would crash downstream (i.e. when trying to print the resultant module).
* Renames `_ods_build_default` -> `build_generic` and documents it.
* Removes `result` from the list of prohibited words and for single-result ops, defaults to naming the result `result`, thereby matching expectations and what is already implemented on the base class.
* This was intended to be a relatively small set of changes to be inlined with the broader support for ODS generating the most specific builder, but it spidered out once actually testing various combinations, so rolling up separately.
Differential Revision: https://reviews.llvm.org/D95320
A cast-like operation is one that converts from a set of input types to a set of output types. The arity of the inputs may be from 0-N, whereas the arity of the outputs may be anything from 1-N. Cast-like operations are removable in cases where they produce a "no-op", i.e when the input types and output types match 1-1.
Differential Revision: https://reviews.llvm.org/D94831
* Matches how all of the other shaped types are declared.
* No super principled reason fro this ordering beyond that it makes the one that was different be like the rest.
* Also matches ordering of things like ndarray, et al.
Reviewed By: ftynse, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D94812
* This isn't exclusive with other mechanisms for more ODS centric op definitions, but based on discussions, we feel that we will always benefit from a python escape hatch, and that is the most natural way to write things that don't fit the mold.
* I suspect this facility needs further tweaking, and once it settles, I'll document it and add more tests.
* Added extensions for linalg, since it is unusable without them and continued to evolve my e2e example.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D94752
* This allows us to hoist trait level information for regions and sized-variadic to class level attributes (_ODS_REGIONS, _ODS_OPERAND_SEGMENTS, _ODS_RESULT_SEGMENTS).
* Eliminates some splicey python generated code in favor of a native helper for it.
* Makes it possible to implement custom, variadic and region based builders with one line of python, without needing to manually code access to the segment attributes.
* Needs follow-on work for region based callbacks and support for SingleBlockImplicitTerminator.
* A follow-up will actually add ODS support for generating custom Python builders that delegate to this new method.
* Also includes the start of an e2e sample for constructing linalg ops where this limitation was discovered (working progressively through this example and cleaning up as I go).
Differential Revision: https://reviews.llvm.org/D94738
cmake_minimum_required(VERSION) calls cmake_policy(VERSION),
which sets all policies up to VERSION to NEW.
LLVM started requiring CMake 3.13 last year, so we can remove
a bunch of code setting policies prior to 3.13 to NEW as it
no longer has any effect.
Reviewed By: phosek, #libunwind, #libc, #libc_abi, ldionne
Differential Revision: https://reviews.llvm.org/D94374
The LLVM dialect type system has been closed until now, i.e. did not support
types from other dialects inside containers. While this has had obvious
benefits of deriving from a common base class, it has led to some simple types
being almost identical with the built-in types, namely integer and floating
point types. This in turn has led to a lot of larger-scale complexity: simple
types must still be converted, numerous operations that correspond to LLVM IR
intrinsics are replicated to produce versions operating on either LLVM dialect
or built-in types leading to quasi-duplicate dialects, lowering to the LLVM
dialect is essentially required to be one-shot because of type conversion, etc.
In this light, it is reasonable to trade off some local complexity in the
internal implementation of LLVM dialect types for removing larger-scale system
complexity. Previous commits to the LLVM dialect type system have adapted the
API to support types from other dialects.
Replace LLVMIntegerType with the built-in IntegerType plus additional checks
that such types are signless (these are isolated in a utility function that
replaced `isa<LLVMType>` and in the parser). Temporarily keep the possibility
to parse `!llvm.i32` as a synonym for `i32`, but add a deprecation notice.
Reviewed By: mehdi_amini, silvas, antiagainst
Differential Revision: https://reviews.llvm.org/D94178
Remove unnecessary `&` from loop variables.
Fix warnings: "loop variable is always a copy because the range does not
return a reference".
```
[240/2862] Building CXX object tools/mlir/tools/mlir-tblgen/CMakeFiles/mlir-tblgen.dir/TypeDefGen.cpp.o
llvm-project/mlir/tools/mlir-tblgen/TypeDefGen.cpp:50:25: warning: loop variable 'typeDef' is always a copy because the range of type 'llvm::iterator_range<llvm::mapped_iterator<std::__1::__wrap_iter<llvm::Record **>, (lambda at llvm-project/mlir/tools/mlir-tblgen/TypeDefGen.cpp:40:16), mlir::tblgen::TypeDef> >' does not return a reference [-Wrange-loop-analysis]
for (const TypeDef &typeDef : defs)
^
llvm-project/mlir/tools/mlir-tblgen/TypeDefGen.cpp:50:10: note: use non-reference type 'mlir::tblgen::TypeDef'
for (const TypeDef &typeDef : defs)
^~~~~~~~~~~~~~~~~~~~~~~~
llvm-project/mlir/tools/mlir-tblgen/TypeDefGen.cpp:64:23: warning: loop variable 'typeDef' is always a copy because the range of type 'llvm::iterator_range<llvm::mapped_iterator<std::__1::__wrap_iter<llvm::Record **>, (lambda at llvm-project/mlir/tools/mlir-tblgen/TypeDefGen.cpp:40:16), mlir::tblgen::TypeDef> >' does not return a reference [-Wrange-loop-analysis]
for (const TypeDef &typeDef : defs)
^
llvm-project/mlir/tools/mlir-tblgen/TypeDefGen.cpp:64:8: note: use non-reference type 'mlir::tblgen::TypeDef'
for (const TypeDef &typeDef : defs)
^~~~~~~~~~~~~~~~~~~~~~~~
2 warnings generated.
[1934/2862] Building CXX object tools...Files/toyc-ch4.dir/mlir/MLIRGen.cpp.o
llvm-project/mlir/examples/toy/Ch4/mlir/MLIRGen.cpp:139:22: warning: loop variable 'name_value' is always a copy because the range of type 'detail::zippy<detail::zip_shortest, ArrayRef<unique_ptr<VariableExprAST, default_delete<VariableExprAST> > > &, MutableArrayRef<BlockArgument> >' does not return a reference [-Wrange-loop-analysis]
for (const auto &name_value :
^
llvm-project/mlir/examples/toy/Ch4/mlir/MLIRGen.cpp:139:10: note: use non-reference type 'std::__1::tuple<const std::__1::unique_ptr<toy::VariableExprAST, std::__1::default_delete<toy::VariableExprAST> > &, mlir::BlockArgument &>'
for (const auto &name_value :
^~~~~~~~~~~~~~~~~~~~~~~~
1 warning generated.
[1940/2862] Building CXX object tools...Files/toyc-ch5.dir/mlir/MLIRGen.cpp.o
llvm-project/mlir/examples/toy/Ch5/mlir/MLIRGen.cpp:139:22: warning: loop variable 'name_value' is always a copy because the range of type 'detail::zippy<detail::zip_shortest, ArrayRef<unique_ptr<VariableExprAST, default_delete<VariableExprAST> > > &, MutableArrayRef<BlockArgument> >' does not return a reference [-Wrange-loop-analysis]
for (const auto &name_value :
^
llvm-project/mlir/examples/toy/Ch5/mlir/MLIRGen.cpp:139:10: note: use non-reference type 'std::__1::tuple<const std::__1::unique_ptr<toy::VariableExprAST, std::__1::default_delete<toy::VariableExprAST> > &, mlir::BlockArgument &>'
for (const auto &name_value :
^~~~~~~~~~~~~~~~~~~~~~~~
1 warning generated.
```
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D94003
Implement Bug 46698, making ODS synthesize a getType() method that returns a
specific C++ class for OneResult methods where we know that class. This eliminates
a common source of casts in things like:
myOp.getType().cast<FIRRTLType>().getPassive()
because we know that myOp always returns a FIRRTLType. This also encourages
op authors to type their results more tightly (which is also good for
verification).
I chose to implement this by splitting the OneResult trait into itself plus a
OneTypedResult trait, given that many things are using `hasTrait<OneResult>`
to conditionalize various logic.
While this changes makes many many ops get more specific getType() results, it
is generally drop-in compatible with the previous behavior because 'x.cast<T>()'
is allowed when x is already known to be a T. The one exception to this is that
we need declarations of the types used by ops, which is why a couple headers
needed additional #includes.
I updated a few things in tree to remove the now-redundant `.cast<>`'s, but there
are probably many more than can be removed.
Differential Revision: https://reviews.llvm.org/D93790
LLVMType contains numerous static constructors that were initially introduced
for API compatibility with LLVM. Most of these merely forward to arguments to
`SpecificType::get` (MLIR defines classes for all types, unlike LLVM IR), while
some introduce subtle semantics differences due to different modeling of MLIR
types (e.g., structs are not auto-renamed in case of conflicts). Furthermore,
these constructors don't match MLIR idioms and actively prevent us from making
the LLVM dialect type system more open. Remove them and use `SpecificType::get`
instead.
Depends On D93680
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D93681
This is part of a larger refactoring the better congregates the builtin structures under the BuiltinDialect. This also removes the problematic "standard" naming that clashes with the "standard" dialect, which is not defined within IR/. A temporary forward is placed in StandardTypes.h to allow time for downstream users to replaced references.
Differential Revision: https://reviews.llvm.org/D92435
Given that OpState already implicit converts to Operator*, this seems reasonable.
The alternative would be to add more functions to OpState which forward to Operation.
Reviewed By: rriddle, ftynse
Differential Revision: https://reviews.llvm.org/D92266
These includes have been deprecated in favor of BuiltinDialect.h, which contains the definitions of ModuleOp and FuncOp.
Differential Revision: https://reviews.llvm.org/D91572
This is an error prone behavior, I frequently have ~20 min debugging sessions when I hit
an unexpected implicit nesting. This default makes the C++ API safer for users.
Depends On D90669
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D90671
Often times the legality of inlining can change depending on if the callable is going to be inlined in-place, or cloned. For example, some operations are not allowed to be duplicated and can only be inlined if the original callable will cease to exist afterwards. The new `wouldBeCloned` flag allows for dialects to hook into this when determining legality.
Differential Revision: https://reviews.llvm.org/D90360
In certain situations it isn't legal to inline a call operation, but this isn't something that is possible(at least not easily) to prevent with the current hooks. This revision adds a new hook so that dialects with call operations that shouldn't be inlined can prevent it.
Differential Revision: https://reviews.llvm.org/D90359
A recent commit introduced a new syntax for specifying builder arguments in
ODS, which is better amenable to automated processing, and deprecated the old
form. Transition all dialects as well as Linalg ODS generator to use the new
syntax.
Add a deprecation notice to ODS generator.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D90038
This class represents a rewrite pattern list that has been frozen, and thus immutable. This replaces the uses of OwningRewritePatternList in pattern driver related API, such as dialect conversion. When PDL becomes more prevalent, this API will allow for optimizing a set of patterns once without the need to do this per run of a pass.
Differential Revision: https://reviews.llvm.org/D89104
This patch introduces a SPIR-V runner. The aim is to run a gpu
kernel on a CPU via GPU -> SPIRV -> LLVM conversions. This is a first
prototype, so more features will be added in due time.
- Overview
The runner follows similar flow as the other runners in-tree. However,
having converted the kernel to SPIR-V, we encode the bind attributes of
global variables that represent kernel arguments. Then SPIR-V module is
converted to LLVM. On the host side, we emulate passing the data to device
by creating in main module globals with the same symbolic name as in kernel
module. These global variables are later linked with ones from the nested
module. We copy data from kernel arguments to globals, call the kernel
function from nested module and then copy the data back.
- Current state
At the moment, the runner is capable of running 2 modules, nested one in
another. The kernel module must contain exactly one kernel function. Also,
the runner supports rank 1 integer memref types as arguments (to be scaled).
- Enhancement of JitRunner and ExecutionEngine
To translate nested modules to LLVM IR, JitRunner and ExecutionEngine were
altered to take an optional (default to `nullptr`) function reference that
is a custom LLVM IR module builder. This allows to customize LLVM IR module
creation from MLIR modules.
Reviewed By: ftynse, mravishankar
Differential Revision: https://reviews.llvm.org/D86108
This reverts commit e9b87f43bd.
There are issues with macros generating macros without an obvious simple fix
so I'm going to revert this and try something different.
New projects (particularly out of tree) have a tendency to hijack the existing
llvm configuration options and build targets (add_llvm_library,
add_llvm_tool). This can lead to some confusion.
1) When querying a configuration variable, do we care about how LLVM was
configured, or how these options were configured for the out of tree project?
2) LLVM has lots of defaults, which are easy to miss
(e.g. LLVM_BUILD_TOOLS=ON). These options all need to be duplicated in the
CMakeLists.txt for the project.
In addition, with LLVM Incubators coming online, we need better ways for these
incubators to do things the "LLVM way" without alot of futzing. Ideally, this
would happen in a way that eases importing into the LLVM monorepo when
projects mature.
This patch creates some generic infrastructure in llvm/cmake/modules and
refactors MLIR to use this infrastructure. This should expand to include
add_xxx_library, which is by far the most complicated bit of building a
project correctly, since it has to deal with lots of shared library
configuration bits. (MLIR currently hijacks the LLVM infrastructure for
building libMLIR.so, so this needs to get refactored anyway.)
Differential Revision: https://reviews.llvm.org/D85140
Now backends spell out which namespace they want to be in, instead of relying on
clients #including them inside already-opened namespaces. This also means that
cppNamespaces should be fully qualified, and there's no implicit "::mlir::"
prepended to them anymore.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D86811
This refactors the standalone-translate executable to use mlirTranslateMain() declared in Translation.h and further applies D87129.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D87131
Unsigned and Signless attributes use uintN_t and signed attributes use intN_t, where N is the fixed width. The 1-bit variants use bool.
Differential Revision: https://reviews.llvm.org/D86739
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
The documentation needs a refresh now that "kinds" are no longer a concept. This revision also adds mentions to a few other new concepts, e.g. traits and interfaces.
Differential Revision: https://reviews.llvm.org/D86182
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This greatly simplifies a large portion of the underlying infrastructure, allows for lookups of singleton classes to be much more efficient and always thread-safe(no locking). As a result of this, the dialect symbol registry has been removed as it is no longer necessary.
For users broken by this change, an alert was sent out(https://llvm.discourse.group/t/removing-kinds-from-attributes-and-types) that helps prevent a majority of the breakage surface area. All that should be necessary, if the advice in that alert was followed, is removing the kind passed to the ::get methods.
Differential Revision: https://reviews.llvm.org/D86121
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
mlir::registerDialect<mlir::standalone::StandaloneDialect>();
mlir::registerDialect<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
This will help refactoring some of the tools to prepare for the explicit registration of
Dialects.
Differential Revision: https://reviews.llvm.org/D86023
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
This revision refactors the default definition of the attribute and type `classof` methods to use the TypeID of the concrete class instead of invoking the `kindof` method. The TypeID is already used as part of uniquing, and this allows for removing the need for users to define any of the type casting utilities themselves.
Differential Revision: https://reviews.llvm.org/D85356
This patch moves the registration to a method in the MLIRContext: getOrCreateDialect<ConcreteDialect>()
This method requires dialect to provide a static getDialectNamespace()
and store a TypeID on the Dialect itself, which allows to lazyily
create a dialect when not yet loaded in the context.
As a side effect, it means that duplicated registration of the same
dialect is not an issue anymore.
To limit the boilerplate, TableGen dialect generation is modified to
emit the constructor entirely and invoke separately a "init()" method
that the user implements.
Differential Revision: https://reviews.llvm.org/D85495
Due to the original type system implementation, LLVMDialect in MLIR contains an
LLVMContext in which the relevant objects (types, metadata) are created. When
an MLIR module using the LLVM dialect (and related intrinsic-based dialects
NVVM, ROCDL, AVX512) is converted to LLVM IR, it could only live in the
LLVMContext owned by the dialect. The type system no longer relies on the
LLVMContext, so this limitation can be removed. Instead, translation functions
now take a reference to an LLVMContext in which the LLVM IR module should be
constructed. The caller of the translation functions is responsible for
ensuring the same LLVMContext is not used concurrently as the translation no
longer uses a dialect-wide context lock.
As an additional bonus, this change removes the need to recreate the LLVM IR
module in a different LLVMContext through printing and parsing back, decreasing
the compilation overhead in JIT and GPU-kernel-to-blob passes.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D85443
Historical modeling of the LLVM dialect types had been wrapping LLVM IR types
and therefore needed access to the instance of LLVMContext stored in the
LLVMDialect. The new modeling does not rely on that and only needs the
MLIRContext that is used for uniquing, similarly to other MLIR types. Change
LLVMType::get<Kind>Ty functions to take `MLIRContext *` instead of
`LLVMDialect *` as first argument. This brings the code base closer to
completely removing the dependence on LLVMContext from the LLVMDialect,
together with additional support for thread-safety of its use.
Depends On D85371
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85372