SymbolTableBaseSection was introduced.
Detemplation of SymbolTableSection should allow to detemplate more things.
Differential revision: https://reviews.llvm.org/D33124
llvm-svn: 303150
Switch to llvm::to_integer() everywhere in LLD instead of
StringRef::getAsInteger() because API of latter is confusing.
It returns true on error and false otherwise what makes reading
the code incomfortable.
Differential revision: https://reviews.llvm.org/D33187
llvm-svn: 303149
We used to place orphans by just using compareSectionsNonScript.
Then we noticed that since linker scripts can use another order, we
should first try match the section to a given PT_LOAD. But there is
nothing special about PT_LOAD. The same issue can show up for
PT_GNU_RELRO for example.
In general, we have to search for the most similar section and put the
orphan next to it. Most similar being defined as how long they follow
the same code path in compareSecitonsNonScript.
That is what this patch does. We now compute a rank for each output
section, with a bit for each branch in what was
compareSectionsNonScript.
With this findOrphanPos is now fully general and orphan placement can
be optimized by placing every section with the same rank at once.
The included testcase is a variation of many-sections.s that uses
allocatable sections to avoid the fast path in the existing
code. Without threads it goes form 46 seconds to 0.9 seconds.
llvm-svn: 302903
This behavior differs from the semantics implemented by GNU linkers
which only define this symbol iff ELF headers are in the memory
mapped segment.
Differential Revision: https://reviews.llvm.org/D33019
llvm-svn: 302687
This is a bit easier to read and a lot faster in some cases. A version
of many-sections.s with linker scripts goes from 0m41.232s to
0m19.575s.
llvm-svn: 302528
The code following this one already considers every possible insertion
point for orphan sections, there is no point in sorting them before.
llvm-svn: 302441
We can set SectionIndex tentatively as we process the linker script
instead of looking it repeatedly.
In general we should try to have as few name lookups as possible.
llvm-svn: 302299
In the non linker script case we would try very early to find out if
we could allocate the headers. Failing to do that would add extra
alignment to the first ro section, since we would set PageAlign
thinking it was the first section in the PT_LOAD.
In the linker script case the header allocation must be done in the
end, causing some duplication.
We now tentatively add the headers to the first PT_LOAD and if it
turns out they don't fit, remove them. With this we only need to
allocate the headers in one place in the code.
llvm-svn: 302186
The --section-start <name>=<address> needs to be translated into equivalent
linker script commands. There are a couple of problems with the existing
implementation:
- The --section-start with the lowest address is assumed to be at the start
of the map. This assumption is incorrect, we have to iterate through the
SectionStartMap to find the lowest address.
- The addresses in --section-start were being over-aligned when the
sections were marked as PageAlign. This is inconsistent with the use of
SectionStartMap in fixHeaders(), and can cause problems when the PageAlign
causes an "unable to move location counter backward" error when the
--section-start with PageAlign is aligned to an address higher than the next
--section-start. The ld.bfd and ld.gold seem to be more consistent with this
approach but this is not a well specified area.
This change fixes the problems above and also corrects a typo in which
fabricateDefaultCommands() is called with the wrong parameter, it should be
called with AllocateHeader not Config->MaxPageSize.
Differential Revision: https://reviews.llvm.org/D32749
llvm-svn: 302007
This version uses a set to speed up the synchronize method.
Original message:
Remove LinkerScript::flush.
This patch replaces flush with a last ditch attempt at synchronizing
the section list with the linker script "AST".
The synchronization is a bit of a hack and should in time be avoided
by creating the AST earlier so that modifications can be made directly
to it instead of modifying the section list and synchronizing it back.
This is the main step for fixing
https://bugs.llvm.org/show_bug.cgi?id=32816. With this in place I
think the only missing thing would be to have processCommands assign
section indexes as dummy offsets so that the sort in
OutputSection::finalize works.
With this LinkerScript::assignAddresses becomes much simpler, which
should help with the thunk work.
llvm-svn: 301745
This reverts commit r301678 since that change significantly slowed
down the linker. Before this patch, LLD could link clang in 8 seconds,
but with this patch it took 40 seconds.
llvm-svn: 301709
This patch replaces flush with a last ditch attempt at synchronizing
the section list with the linker script "AST".
The synchronization is a bit of a hack and should in time be avoided
by creating the AST earlier so that modifications can be made directly
to it instead of modifying the section list and synchronizing it back.
This is the main step for fixing
https://bugs.llvm.org/show_bug.cgi?id=32816. With this in place I
think the only missing thing would be to have processCommands assign
section indexes as dummy offsets so that the sort in
OutputSection::finalize works.
With this LinkerScript::assignAddresses becomes much simpler, which
should help with the thunk work.
llvm-svn: 301678
addIgnored defines a given symbol even if there is no existing
symbol with the same name. So, even if libc provides __tls_get_addr,
we should still be able to call addIgnored.
Differential Revision: https://reviews.llvm.org/D32053
llvm-svn: 301290
This change fabricates linker script commands for the case where there is
no linker script SECTIONS to control address assignment. This permits us
to have a single Script->assignAddresses() function.
There is a small change in user-visible-behavior with respect to the
handling of .tbss SHT_NOBITS, SHF_TLS as the Script->assignAddresses()
requires setDot() to be called with monotically increasing addresses.
The tls-offset.s test has been updated so that the script and non-script
results match.
This change should make the non-script behavior of lld closer to an
equivalent linker script.
Differential Revision: https://reviews.llvm.org/D31888
llvm-svn: 300687
Patch implements --compress-debug-sections=zlib.
In compare with D20211 (a year old patch, abandoned), it implementation
uses streaming and fully reimplemented, does not support zlib-gnu for
simplification.
This is PR32308.
Differential revision: https://reviews.llvm.org/D31941
llvm-svn: 300444
RELRO is a feature to make segments read-only after dynamic relocations
are applied. It is different from read-only segments because RELRO is
initially writable. And of course RELRO is different from writable
segments.
RELRO is not a very well known feature. We have a series of checks to
make a decision whether a section should be in a RELRO segment or not,
but we didn't describe why. This patch adds comments to explain how
that decision is made.
llvm-svn: 300176
Executable sections should not be padded with zero by default. On some
architectures, 0x00 is the start of a valid instruction sequence, so can confuse
disassembly between InputSections (and indeed the start of the next InputSection
in some situations). Further, in the case of misjumps into padding, padding may
start to be executed silently.
On x86, the "0xcc" byte represents the int3 trap instruction. It is a single
byte long so can serve well as padding. This change switches x86 (and x86_64) to
use this value for padding in executable sections, if no linker script directive
overrides it. It also puts the behaviour into place making it easy to change the
behaviour of other targets when desired. I do not know the relevant instruction
sequences for trap instructions on other targets however, so somebody should add
this separately.
Because the old behaviour simply wrote padding in the whole section before
overwriting most of it, this change also modifies the padding algorithm to write
padding only where needed. This in turn has caused a small behaviour change with
regards to what values are written via Fill commands in linker scripts, bringing
it into line with ld.bfd. The fill value is now written starting from the end of
the previous block, which means that it always starts from the first byte of the
fill, whereas the old behaviour meant that the padding sometimes started mid-way
through the fill value. See the test changes for more details.
Reviewed by: ruiu
Differential Revision: https://reviews.llvm.org/D30886
Bugzilla: http://bugs.llvm.org/show_bug.cgi?id=32227
llvm-svn: 299635
For range extension thunks we will need to repeatedly call createThunks()
until no more thunks are created. We will need to retain the state of
Thunks that we have created so far to avoid recreating them on later
passes. This change does not change the functionality of createThunks().
Differential Revision: https://reviews.llvm.org/D31654
llvm-svn: 299530
GNU linkers define __bss_start symbol.
Patch teaches LLD to do that. This is PR32051.
Below is part of standart ld.bfd script:
.data1 : { *(.data1) }
_edata = .; PROVIDE (edata = .);
. = .;
__bss_start = .;
.bss :
{
Currently LLD can emit up to 3 .bss* sections as one of testcase shows.
Implementation inserts this symbol before first .bss* output section.
Differential revision: https://reviews.llvm.org/D30419
llvm-svn: 299528
LinkerScript used to be a template class, so we couldn't instantiate
that class in elf::link. We instantiated ScriptConfig class earlier
instead so that the linker script parser can store configurations to
the object.
Now that LinkerScript is not a template, it doesn't make sense to
separate ScriptConfig from LinkerScript. This patch merges them.
llvm-svn: 298457
Patch moves Sections array to
InputFile (root class for input files).
That allows to detemplate GdbIndexSection.
Differential revision: https://reviews.llvm.org/D30976
llvm-svn: 298345
The patch introduces two new relocations expressions R_MIPS_GOT_GP and
R_MIPS_GOT_GP_PC. The first one represents a current value of `_gp`
pointer and used to calculate relocations against the `__gnu_local_gp`
symbol. The second one represents the offset between the beginning of
the function and the `_gp` pointer's value.
There are two motivations for introducing new expressions:
- It's better to keep all non-trivial relocation calculations in the
single place - `getRelocTargetVA` function.
- Relocations against both `_gp_disp` and `__gnu_local_gp` symbols
depend on the `_gp` value. It's a magical value points to the "middle"
of GOT. Now all relocations use a common `_gp` value. But in fact,
under some conditions each input file might require its own `_gp`
value. I'm going to implement it in the future patches. So it's
better to make `MipsGotSection` responsible for calculation of
the `_gp` value.
llvm-svn: 298306
This continues detemplation process.
Detemplating MipsGotSection<ELFT> is helpfull because can
help to detemplate getRelocTargetVA. (one more change is required)
It opens road to detemplation of GotSection<ELFT> and probably
something else after that.
Differential revision: https://reviews.llvm.org/D31090
llvm-svn: 298272
Does not introduce anything new,
just performs detemplate, using methods we
already have.
Differential revision: https://reviews.llvm.org/D30935
llvm-svn: 298269
We had a few Config member functions that returns configuration values.
For example, we had is64() which returns true if the target is 64-bit.
The return values of these functions are constant and never change.
This patch is to compute them only once to make it clear that they'll
never change.
llvm-svn: 298168