Previously we limited ourselves to only emitting nested classes, but we
need other kinds of types as well.
This fixes the Visual Studio STL visualizers, so that users can
visualize std::string and other objects.
llvm-svn: 310410
`GenerateVarArgsThunk` in `CGVTables` clones a function before the frontend
is done emitting the compilation unit. Because of the way that DIBuilder
works, this means that the attached subprogram had incomplete (temporary)
metadata. Cloning such metadata is semantically disallowed, but happened
to work anyway due to bugs in the cloning logic. rL304226 attempted to fix
up that logic, but in the process exposed the incorrect API use here and
had to be reverted. To be able to fix this, I added a new method to
DIBuilder in rL304467, to allow finalizing a subprogram independently
of the entire compilation unit. Use that here, in preparation of re-applying
rL304226.
Reviewers: aprantl, dblaikie
Differential Revision: https://reviews.llvm.org/D33705
llvm-svn: 304470
This addresses review feedback from r302840.
By not canonicalizing namespace decls and using lexical decl context
instead of lookuing up the semantic decl context we can take advantage
of the fact that DINamespaces a reuniqued. This way non-module debug
info is unchanged and module debug info still gets distinct namespace
declarations when they ocur in different modules.
Thanks to Richard Smith for pointing this out!
llvm-svn: 302915
The AST merges NamespaceDecls, but for module debug info it is
important to put a namespace decl (or rather its children) into the
correct (sub-)module, so we need to use the parent module of the decl
that triggered this namespace to be serialized as a second key when
looking up DINamespace nodes.
rdar://problem/29339538
llvm-svn: 302840
Matching the function-homing support for modular codegen. Any type
implicitly (implicit template specializations) or explicitly defined in
a module is attached to that module's object file and omitted elsewhere
(only a declaration used if necessary for references).
llvm-svn: 299987
When clang emits an inheriting C++ constructor it may inline code
during the CodeGen phase. This patch ensures that any debug info in
this inlined code gets a proper inlined location. Otherwise we can end
up with invalid debug info metadata, since all inlined local variables
and function arguments would be reparented into the call site.
Analogous to ApplyInlineLocation this patch introduces a
ApplyInlineDebugLocation scoped helper to facilitate entering an
inlined scope and cleaning up afterwards.
This fixes one of the issues discovered in PR32042.
rdar://problem/30679307
llvm-svn: 296388
Accounts for a case that caused an assertion failure by attempting to
query for the vtable linkage of a non-dynamic type.t
This reverts commit r292801.
llvm-svn: 293462
To ensure optimization level doesn't pessimize the -fstandalone-debug
vtable debug info optimization (where class definitions are only emitted
where the vtable is emitted - reducing redundant debug info) ensure the
debug info class definition is still omitted when an
available_externally vtable definition is emitted for optimization
purposes.
llvm-svn: 292768
can be used to improve the locations when generating remarks for loops.
Depends on the companion LLVM change r286227.
Patch by Florian Hahn.
Differential Revision: https://reviews.llvm.org/D25764
llvm-svn: 286456
Summary:
Fixes PR28281.
MSVC lists indirect virtual base classes in the field list of a class.
This change makes Clang emit the information necessary for LLVM to
emit such records.
Reviewers: rnk, ruiu, zturner
Differential Revision: https://reviews.llvm.org/D25579
llvm-svn: 285132
Preparation to implement DW_AT_alignment support:
- We pass non-zero align value to DIBuilder only when alignment was forced
- Modify tests to match this change
Differential Revision: https://reviews.llvm.org/D24426
llvm-svn: 284679
We also need to add ObjCTypeParamTypeLoc. ObjCTypeParamType supports the
representation of "T <protocol>" where T is a type parameter. Before this,
we use TypedefType to represent the type parameter for ObjC.
ObjCTypeParamType has "ObjCTypeParamDecl *OTPDecl" and it extends from
ObjCProtocolQualifiers. It is a non-canonical type and is canonicalized
to the underlying type with the protocol qualifiers.
rdar://24619481
rdar://25060179
Differential Revision: http://reviews.llvm.org/D23079
llvm-svn: 281355
Use llvm::DINode::DIFlags type (strongly typed enum) for debug flags instead of unsigned int to avoid problems on platforms with sizeof(int) < 4: we already have flags with values > (1 << 16).
Patch by: Victor Leschuk <vleschuk@gmail.com>
Differential Revision: https://reviews.llvm.org/D23767
llvm-svn: 280701
The shape is really just the number of methods in the vftable, since we
don't support 16 bit far calls. All calls are near. Encode this number
in the size of the artificial __vtbl_ptr_type DIDerivedType that we
generate. For DWARF, this will be a normal pointer, but for codeview
this will be a wide pointer that gets pattern matched into a
VFTableShape record. Insert this type into the element list of all
dynamic classes when emitting CodeView, so that the backend can emit the
shape even if the vptr lives in a primary base class.
Fixes PR28150
llvm-svn: 280255
Currently Clang use int32 to represent sampler_t, which have been a source of issue for some backends, because in some backends sampler_t cannot be represented by int32. They have to depend on kernel argument metadata and use IPA to find the sampler arguments and global variables and transform them to target specific sampler type.
This patch uses opaque pointer type opencl.sampler_t* for sampler_t. For each use of file-scope sampler variable, it generates a function call of __translate_sampler_initializer. For each initialization of function-scope sampler variable, it generates a function call of __translate_sampler_initializer.
Each builtin library can implement its own __translate_sampler_initializer(). Since the real sampler type tends to be architecture dependent, allowing it to be initialized by a library function simplifies backend design. A typical implementation of __translate_sampler_initializer could be a table lookup of real sampler literal values. Since its argument is always a literal, the returned pointer is known at compile time and easily optimized to finally become some literal values directly put into image read instructions.
This patch is partially based on Alexey Sotkin's work in Khronos Clang (3d4eec6162).
Differential Revision: https://reviews.llvm.org/D21567
llvm-svn: 277024
Patch broke ModuleDebugInfo test on the build bots (but not locally). Again.
svn revision: r276271
This reverts commit 9da8a1b05362bc96f2855fb32b5588b89407685d.
llvm-svn: 276279
Unreferenced nested structs and classes were omitted from the debug info. In DWARF, this was intentional, to avoid bloat. But for CodeView, we want this information to be consistent with what Microsoft tools would produce and expect.
llvm-svn: 276271
Reverting because it causes a test failure on build bots (Modules/ModuleDebugInfo.cpp). Failure does not reproduce locally.
svn revision: rL274698
This reverts commit 3c5ed6599b086720aab5b8bd6941149d066806a6.
llvm-svn: 274706
This should work now that the LLVM-side of the change has landed successfully.
Original Differential Revision: http://reviews.llvm.org/D21705
This reverts commit a30322e861c387e1088f47065d0438c6bb019879.
llvm-svn: 274698
This includes nested types in the member list, even if there are no members of that type. Note that structs and classes have themselves as an "implicit struct" as the first member, so we skip implicit ones.
Differential Revision: http://reviews.llvm.org/D21705
llvm-svn: 274628
Emit the underlying storage offset in addition to the starting bit
position of the field.
This fixes PR28162.
Differential Revision: http://reviews.llvm.org/D21783
llvm-svn: 274201
Putting OpenCLImageTypes.def to clangAST library violates layering requirement: "It's not OK for a Basic/ header to include an AST/ header".
This fixes the modules build.
Differential revision: http://reviews.llvm.org/D18954
Reviewers: Richard Smith, Vassil Vassilev.
llvm-svn: 266180
Revert the two changes to thread CodeGenOptions into the TargetInfo allocation
and to fix the layering violation by moving CodeGenOptions into Basic.
Code Generation is arguably not particularly "basic". This addresses Richard's
post-commit review comments. This change purely does the mechanical revert and
will be followed up with an alternate approach to thread the desired information
into TargetInfo.
llvm-svn: 265806
I. Current implementation of images is not conformant to spec in the following points:
1. It makes no distinction with respect to access qualifiers and therefore allows to use images with different access type interchangeably. The following code would compile just fine:
void write_image(write_only image2d_t img);
kernel void foo(read_only image2d_t img) { write_image(img); } // Accepted code
which is disallowed according to s6.13.14.
2. It discards access qualifier on generated code, which leads to generated code for the above example:
call void @write_image(%opencl.image2d_t* %img);
In OpenCL2.0 however we can have different calls into write_image with read_only and wite_only images.
Also generally following compiler steps have no easy way to take different path depending on the image access: linking to the right implementation of image types, performing IR opts and backend codegen differently.
3. Image types are language keywords and can't be redeclared s6.1.9, which can happen currently as they are just typedef names.
4. Default access qualifier read_only is to be added if not provided explicitly.
II. This patch corrects the above points as follows:
1. All images are encapsulated into a separate .def file that is inserted in different points where image handling is required. This avoid a lot of code repetition as all images are handled the same way in the code with no distinction of their exact type.
2. The Cartesian product of image types and image access qualifiers is added to the builtin types. This simplifies a lot handling of access type mismatch as no operations are allowed by default on distinct Builtin types. Also spec intended access qualifier as special type qualifier that are combined with an image type to form a distinct type (see statement above - images can't be created w/o access qualifiers).
3. Improves testing of images in Clang.
Author: Anastasia Stulova
Reviewers: bader, mgrang.
Subscribers: pxli168, pekka.jaaskelainen, yaxunl.
Differential Revision: http://reviews.llvm.org/D17821
llvm-svn: 265783
This is a mechanical move of CodeGenOptions from libFrontend to libBasic. This
fixes the layering violation introduced earlier by threading CodeGenOptions into
TargetInfo. It should also fix the modules based self-hosting builds. NFC.
llvm-svn: 265702
Summary:
Support for OpenCL 2.0 pipe type.
This is a bug-fix version for bader's patch reviews.llvm.org/D14441
Reviewers: pekka.jaaskelainen, Anastasia
Subscribers: bader, Anastasia, cfe-commits
Differential Revision: http://reviews.llvm.org/D15603
llvm-svn: 257254
Add support for the `-fdebug-prefix-map=` option as in GCC. The syntax is
`-fdebug-prefix-map=OLD=NEW`. When compiling files from a path beginning with
OLD, change the debug info to indicate the path as start with NEW. This is
particularly helpful if you are preprocessing in one path and compiling in
another (e.g. for a build cluster with distcc).
Note that the linearity of the implementation is not as terrible as it may seem.
This is normally done once per file with an expectation that the map will be
small (1-2) entries, making this roughly linear in the number of input paths.
Addresses PR24619.
llvm-svn: 250094
when building a module. Clang already records the module signature when
building a skeleton CU to reference a clang module.
Matching the id in the skeleton with the one in the module allows a DWARF
consumer to verify that they found the correct version of the module
without them needing to know about the clang module format.
llvm-svn: 248345
The signature may not have been computed at the time the module reference
is generated (e.g.: in the future while emitting debug info for a clang
module). Using the full module name is safe because each clang module may
only have a single definition.
NFC.
llvm-svn: 248037
clang modules, if -dwarf-ext-refs (DebugTypesExtRefs) is specified.
This reimplements r247369 in about a third of the amount of code.
Thanks to David Blaikie pointing this out in post-commit review!
llvm-svn: 247432
When -fmodule-format is set to "obj", emit debug info for all types
declared in a module or referenced by a declaration into the module's
object file container.
This patch adds support for Objective-C types and methods.
llvm-svn: 247068
Usually debug info is created on the fly while during codegen.
With this API it becomes possible to create standalone debug info
for types that are not referenced by any code, such as emitting debug info
for a clang module or for implementing something like -gfull.
Because on-the-fly debug info generation may still insert retained types
on top of them, all RetainedTypes are uniqued in CGDebugInfo::finalize().
llvm-svn: 246210
to enable the use of external type references in the debug info
(a.k.a. module debugging).
The driver expands -gmodules to "-g -fmodule-format=obj -dwarf-ext-refs"
and passes that to cc1. All this does at the moment is set a flag
codegenopts.
http://reviews.llvm.org/D11958
llvm-svn: 246192
a BumpPtrAllocator. This at least now handles the case where there is no
concatentation without calling memcpy on a null pointer. It might be
interesting to handle the case where everything is empty without
round-tripping through the allocator, but it wasn't clear to me if the
pointer returned is significant in any way, so I've left it in
a conservatively more-correct state.
Again, found with UBSan.
llvm-svn: 243948
Adjust to LLVM DIBuilder API changes in r243764, using
`createAutoVariable()` and `createParameterVariable()` in place of
`createLocalVariable()`. No real functionality change here.
llvm-svn: 243765
Change `getOrCreateLimitedType()` to return a `DICompositeType` and
remove the casts from its callers. Inside, I've strengthened a `cast`
from `DICompositeTypeBase`, but the casts in the callers already prove
that this is safe. There should be no functionality change here.
llvm-svn: 243155
different function signatures. (Previously clang would emit all block
pointer types with the type of the first block pointer in the compile
unit.)
rdar://problem/21602473
llvm-svn: 241534
Function static variables, typedefs and records (class, struct or union) declared inside
a lexical scope were associated with the function as their parent scope, rather than the
lexical scope they are defined or declared in.
This fixes PR19238
Patch by: amjad.aboud@intel.com
Differential Revision: http://reviews.llvm.org/D9760
llvm-svn: 241154
This allows a module-aware debugger such as LLDB to import the currently
visible modules before dropping into the expression evaluator.
rdar://problem/20965932
llvm-svn: 241084
LLVM r236120 renamed debug info IR constructs to use a `DI` prefix, now
that the `DIDescriptor` hierarchy has been gone for about a week. This
commit was generated using the rename-md-di-nodes.sh upgrade script
attached to PR23080, followed by running clang-format-diff.py on the
`lib/` portion of the patch.
llvm-svn: 236121
An upcoming LLVM commit will remove the `DIArray` and `DITypeArray`
typedefs that shadow `DebugNodeArray` and `MDTypeRefArray`,
respectively. Use those types directly.
llvm-svn: 235412
Prepare for the deletion in LLVM of the subclasses of (the already
deleted) `DIScope` by using the raw pointers they were wrapping
directly.
llvm-svn: 235355
Subclasses of (the already deleted) `DIType` will be deleted by an
upcoming LLVM commit. Remove references.
While `DICompositeType` wraps `MDCompositeTypeBase` and `DIDerivedType`
wraps `MDDerivedTypeBase`, most uses of each really meant the more
specific `MDCompositeType` and `MDDerivedType`. I updated accordingly.
llvm-svn: 235350
LLVM r235111 changed the `DIBuilder` API to stop using `DIDescriptor`
and its subclasses. Rolled into this was some tightening up of types:
- Scopes: `DIDescriptor` => `MDScope*`.
- Generic debug nodes: `DIDescriptor` => `DebugNode*`.
- Subroutine types: `DICompositeType` => `MDSubroutineType*`.
- Composite types: `DICompositeType` => `MDCompositeType*`.
Note that `DIDescriptor` wraps `MDNode`, and `DICompositeType` wraps
`MDCompositeTypeBase`.
It's this new type strictness that requires changes here.
llvm-svn: 235112
distinction between the different use-cases. With the previous default
behavior we would occasionally emit empty debug locations in situations
where they actually were strictly required (= on invoke insns).
We now have a choice between defaulting to an empty location or an
artificial location.
Specifically, this fixes a bug caused by a missing debug location when
emitting C++ EH cleanup blocks from within an artificial function, such as
an ObjC destroy helper function.
rdar://problem/19670595
llvm-svn: 228003
This is half a fix for a GDB test suite failure that expects to start at
'a' in the following code:
void func(int a)
if (a
&&
b)
...
But instead, without this change, the comparison was assigned to '&&'
(well, worse actually - because there was a chained 'a && b && c' and it
was assigned to the second '&&' because of a recursive application of
this bug) and then the load folded into the comparison so breaking on
the function started at '&&' instead of 'a'.
The other part of this needs to be fixed in LLVM where it's ignoring the
location of the icmp and instead using the location of the branch
instruction.
The fix to the conditional operator is actually a no-op currently,
because the conditional operator's location coincides with 'a' (the
start of the conditional expression) but should probably be '?' instead.
See the FIXME in the test case that mentions the ARCMigration tool
failures when I tried to make that change.
llvm-svn: 227356
This causes things like assignment to refer to the '=' rather than the
LHS when attributing the store instruction, for example.
There were essentially 3 options for this:
* The beginning of an expression (this was the behavior prior to this
commit). This meant that stepping through subexpressions would bounce
around from subexpressions back to the start of the outer expression,
etc. (eg: x + y + z would go x, y, x, z, x (the repeated 'x's would be
where the actual addition occurred)).
* The end of an expression. This seems to be what GCC does /mostly/, and
certainly this for function calls. This has the advantage that
progress is always 'forwards' (never jumping backwards - except for
independent subexpressions if they're evaluated in interesting orders,
etc). "x + y + z" would go "x y z" with the additions occurring at y
and z after the respective loads.
The problem with this is that the user would still have to think
fairly hard about precedence to realize which subexpression is being
evaluated or which operator overload is being called in, say, an asan
backtrace.
* The preferred location or 'exprloc'. In this case you get sort of what
you'd expect, though it's a bit confusing in its own way due to going
'backwards'. In this case the locations would be: "x y + z +" in
lovely postfix arithmetic order. But this does mean that if the op+
were an operator overload, say, and in a backtrace, the backtrace will
point to the exact '+' that's being called, not to the end of one of
its operands.
(actually the operator overload case doesn't work yet for other reasons,
but that's being fixed - but this at least gets scalar/complex
assignments and other plain operators right)
llvm-svn: 227027
This workaround was to provide unique call sites to ensure LLVM's inline
debug info handling would properly unique two calls to the same function
on the same line. Instead, this has now been fixed in LLVM (r226736) and
the workaround here can be removed.
Originally committed in r176895, but this isn't a straight revert due to
all the changes since then. I just searched for anything ForcedColumn*
related and removed them.
We could test this - but it didn't strike me as terribly valuable once
we're no longer adding this workaround everything just works as expected
& it's no longer a special case to test for.
llvm-svn: 226738