- simplify operations with identity elements (multiply by 1, add with 0).
- simplify successive add/mul: fold constants, propagate constants to the
right.
- simplify floordiv and ceildiv when divisors are constants, and the LHS is a
multiply expression with RHS constant.
- fix an affine expression printing bug on paren emission.
- while on this, fix affine-map test cases file (memref's using layout maps
that were duplicates of existing ones should be emitted pointing to the
unique'd one).
PiperOrigin-RevId: 207046738
generalize the asmprinters handling of pretty names to allow arbitrary sugar to
be dumped on various constructs. Give CFG function arguments nice "arg0" names
like MLFunctions get, and give constant integers pretty names like %c37 for a
constant 377
PiperOrigin-RevId: 206953080
Fix b/112039912 - we were recording 'i' instead of '%i' for loop induction variables causing "use of undefined SSA value" error.
PiperOrigin-RevId: 206884644
Two problems: 1) we didn't visit the types in ops correctly, and 2) the
general "T" version of the OpAsmPrinter inserter would match things like
MemRefType& and print it directly.
PiperOrigin-RevId: 206863642
This is doing it in a suboptimal manner by recombining [integer period literal] into a string literal and parsing that via to_float.
PiperOrigin-RevId: 206855106
This is still (intentionally) generating redundant parens for nested tightly
binding expressions, but I think that is reasonable for readability sake.
This also print x-y instead of x-(y*1)
PiperOrigin-RevId: 206847212
Induction variables are implemented by inheriting ForStmt from MLValue. ForStmt provides APIs that make this design decision invisible to the ForStmt users.
This CL in combination with cl/206253643 resolves http://b/111769060.
PiperOrigin-RevId: 206655937
and OtherType. Other type is now the thing that holds AffineInt, Control,
eventually Resource, Variant, String, etc. FloatType holds the floating point
types, and allows convenient query of isa<FloatType>().
This fixes issues where we allowed control to be the element type of tensor,
memref, vector. At the same time, ban AffineInt from being an element of a
vector/memref/tensor as well since we don't need it.
I updated the spec to match this as well.
PiperOrigin-RevId: 206361942
- Enhance memref type to allow omission of mappings and address
spaces (implying a default mapping).
- Fix printing of function types to properly recurse with printType
so mappings are printed by name.
- Simplify parsing of AffineMaps a bit now that we have
isSymbolicOrConstant()
PiperOrigin-RevId: 206039755
This regresses parser error recovery in some cases (in invalid.mlir) which I'll
consider in a follow-up patch. The important thing in this patch is that the
parse methods in StandardOps.cpp are nice and simple.
PiperOrigin-RevId: 206023308
This looks heavyweight but most of the code is in the massive number of operand accessors!
We need to be able to iterate over all operands to the condbr (all live-outs) but also just
the true/just the false operands too.
PiperOrigin-RevId: 205897704
While fixing this the parser-affine-map.mlir test started failing due to ordering of the printed affine maps. Even the existing CHECK-DAGs weren't enough to disambiguate; a partial match on one line precluded a total match on a following line.
The fix for this was easy - print the affine maps in reference order rather than in DenseMap iteration order.
PiperOrigin-RevId: 205843770
- Op classes can now provide customized matchers, allowing specializations
beyond just a name match.
- We now provide default implementations of verify/print hooks, so Op classes
only need to implement them if they're doing custom stuff, and only have to
implement the ones they're interested in.
- "Base" now takes a variadic list of template template arguments, allowing
concrete Op types to avoid passing the Concrete type multiple times.
- Add new ZeroOperands trait.
- Add verification hooks to Zero/One/Two operands and OneResult to check that
ops using them are correctly formed.
- Implement getOperand hooks to zero/one/two operand traits, and
getResult/getType hook to OneResult trait.
- Add a new "constant" op to show some of this off, with a specialization for
the constant case.
This patch also splits op validity checks out to a new test/IR/invalid-ops.mlir
file.
This stubs out support for default asmprinter support. My next planned patch
building on top of this will make asmprinter hooks real and will revise this.
PiperOrigin-RevId: 205833214
This patch adds support for basic block arguments including parsing and printing.
In doing so noticed that `ssa-id-and-type` is undefined in the MLIR spec; suggested an implementation in the spec doc.
PiperOrigin-RevId: 205593369
is still limited in several ways, which i'll build out in subsequent patches.
Rename the accessor for inst operands/results to make the Operand/Result
versions of these more obscure, allowing getOperand/getResult to traffic
in values (which is what - by far - most clients actually care about).
PiperOrigin-RevId: 205408439
- Drop sub-classing of affine binary op expressions.
- Drop affine expr op kind sub. Represent it as multiply by -1 and add. This
will also be in line with the math form when we'll need to represent a system of
linear equalities/inequalities: the negative number goes into the coefficient
of an affine form. (For eg. x_1 + (-1)*x_2 + 3*x_3 + (-2) >= 0). The folding
simplification will transparently deal with multiplying the -1 with any other
constants. This also means we won't need to simplify a multiply expression
like in x_1 + (-2)*x_2 to a subtract expression (x_1 - 2*x_2) for
canonicalization/uniquing.
- When we print the IR, we will still pretty print to a subtract when possible.
PiperOrigin-RevId: 205298958
Loop bounds and presumed to be constants for now and are stored in ForStmt as affine constant expressions. ML function arguments, return statement operands and loop variable name are dropped for now.
PiperOrigin-RevId: 205256208
- This introduces a new FunctionParser base class to handle logic common
between the kinds of functions we have, e.g. ssa operand/def parsing.
- This introduces a basic symbol table (without support for forward
references!) and links defs and uses.
- CFG functions now parse and build operand lists for operations. The printer
isn't set up for them yet tho.
PiperOrigin-RevId: 205246110
the instruction side of the house.
This has a number of limitations, including that we are still dropping
operands on the floor in the parser. Also, most of the convenience methods
aren't wired up yet. This is enough to get result type lists round tripping
through.
PiperOrigin-RevId: 205148223
Refactors operation parsing to share functionality between CFG and ML functions. ML function construction now goes through a builder, similar to the way it is done for
CFG functions.
PiperOrigin-RevId: 204779279
is no strong reason to prefer one or the other, but // is nice for consistency
given the rest of the compiler is written in C++.
PiperOrigin-RevId: 204628476
- fold constants when possible.
- for a mul expression, canonicalize to always keep the LHS as the
constant/symbolic term, and similarly, the RHS for an add expression to keep
it closer to the mathematical form. (Eg: f(x) = 3*x + 5)); other similar simplifications;
- verify binary op expressions at creation time.
TODO: we can completely drop AffineSubExpr, and instead use add and mul by -1.
This way something like x - 4 and -4 + x get canonicalized to x + -1 * 4
instead of being x - 4 and x + -4. (The other alternative if wanted to retain
AffineSubExpr would be to simplify x + -1*y to x - y and x + <neg number> to x
- <pos number>).
PiperOrigin-RevId: 204240258
- check for non-affine expressions
- handle negative numbers and negation of id's, expressions
- functions to check if a map is pure affine or semi-affine
- simplify/clean up affine map parsing code
- report more errors messages, more accurate error messages
PiperOrigin-RevId: 203773633