While here, I'd like to complain about how vector is not an aggregate type
according to llvm::Type::isAggregateType(), but they're listed under aggregate
types in the LangRef and zero vectors are stored as ConstantAggregateZero.
llvm-svn: 123956
value, the "add pc" must be CSE'ed at the same time. We could follow the same
approach as T2 by adding pseudo instructions that combine the ldr + "add pc".
But the better approach is to use movw + movt (which I will enable soon), so
I'll leave this as a TODO.
llvm-svn: 123949
in cdp/cdp2 instructions. Also increase the hack with cdp/cdp2 instructions.
- Fix the encoding of cdp/cdp2 instructions for ARM (no thumb and thumb2 yet) and add testcases for t
hem.
llvm-svn: 123927
auto-simplier the transform most missed by early-cse is (zext X) != 0 -> X != 0.
This patch adds this transform and some related logic to InstructionSimplify
and removes some of the logic from instcombine (unfortunately not all because
there are several situations in which instcombine can improve things by making
new instructions, whereas instsimplify is not allowed to do this). At -O2 this
often results in more than 15% more simplifications by early-cse, and results in
hundreds of lines of bitcode being eliminated from the testsuite. I did see some
small negative effects in the testsuite, for example a few additional instructions
in three programs. One program, 483.xalancbmk, got an additional 35 instructions,
which seems to be due to a function getting an additional instruction and then
being inlined all over the place.
llvm-svn: 123911
to add/sub by doing the normal operation and then checking for overflow
afterwards. This generally relies on the DAG handling the later invalid
operations as well.
Fixes the 64-bit part of rdar://8622122 and rdar://8774702.
llvm-svn: 123908
TargetInstrInfo:
Change produceSameValue() to take MachineRegisterInfo as an optional argument.
When in SSA form, targets can use it to make more aggressive equality analysis.
Machine LICM:
1. Eliminate isLoadFromConstantMemory, use MI.isInvariantLoad instead.
2. Fix a bug which prevent CSE of instructions which are not re-materializable.
3. Use improved form of produceSameValue.
ARM:
1. Teach ARM produceSameValue to look pass some PIC labels.
2. Look for operands from different loads of different constant pool entries
which have same values.
3. Re-implement PIC GA materialization using movw + movt. Combine the pair with
a "add pc" or "ldr [pc]" to form pseudo instructions. This makes it possible
to re-materialize the instruction, allow machine LICM to hoist the set of
instructions out of the loop and make it possible to CSE them. It's a bit
hacky, but it significantly improve code quality.
4. Some minor bug fixes as well.
With the fixes, using movw + movt to materialize GAs significantly outperform the
load from constantpool method. 186.crafty and 255.vortex improved > 20%, 254.gap
and 176.gcc ~10%.
llvm-svn: 123905
with an invalid type then split the result and perform the overflow check
normally.
Fixes the 32-bit parts of rdar://8622122 and rdar://8774702.
llvm-svn: 123864
by indvars through the scev expander.
trunc(add x, y) --> add(trunc x, y). Currently SCEV largely folds the other way
which is probably wrong, but preserved to minimize churn. Instcombine doesn't
do this fold either, demonstrating a missed optz'n opportunity on code doing
add+trunc+add.
llvm-svn: 123838
Unfortunately, while this is the "right" thing to do, it breaks some ARM
asm parsing tests because MemMode5 and ThumbMemModeReg are ambiguous. This
is tricky to resolve since neither is a subset of the other.
XFAIL the test for now. The old way was broken in other ways, just ways
we didn't happen to be testing, and our ARM asm parsing is going to require
significant revisiting at a later point anyways.
llvm-svn: 123786
are pointing to the same object, one pointer is accessing the entire
object, and the other is access has a non-zero size. This prevents
TBAA from kicking in and saying NoAlias in such cases.
llvm-svn: 123775
These were not recommended by my auto-simplifier since they don't fire often enough.
However they do fire from time to time, for example they remove one subtraction from
the final bitcode for 483.xalancbmk.
llvm-svn: 123755
simplification in fully optimized code. It occurs sporadically in the testsuite, and
many times in 403.gcc: the final bitcode has 131 fewer subtractions after this change.
The reason that the multiplies are not eliminated is the same reason that instcombine
did not catch this: they are used by other instructions (instcombine catches this with
a more general transform which in general is only profitable if the operands have only
one use).
llvm-svn: 123754
This shaves off 4 popcounts from the hacked 186.crafty source.
This is enabled even when a native popcount instruction is available. The
combined code is one operation longer but it should be faster nevertheless.
llvm-svn: 123621
movw r0, :lower16:(L_foo$non_lazy_ptr-(LPC0_0+4))
movt r0, :upper16:(L_foo$non_lazy_ptr-(LPC0_0+4))
LPC0_0:
add r0, pc, r0
It's not yet enabled by default as some tests are failing. I suspect bugs in
down stream tools.
llvm-svn: 123619
This fixes the original testcase in PR8927. It also causes a clang
binary built with a patched clang to increase in size by 0.21%.
We can probably get some of the size back by writing a pass that
detects that a global never has its pointer compared and adds
unnamed_addr to it (maybe extend global opt). It is also possible that
there are some other cases clang could add unnamed_addr to.
I will investigate extending globalopt next.
llvm-svn: 123584
into and/shift would cause nodes to move around and a dangling pointer
to happen. The code tried to avoid this with a HandleSDNode, but
got the details wrong.
llvm-svn: 123578
then don't try to decimate it into its individual pieces. This will just make a mess of the
IR and is pointless if none of the elements are individually accessed. This was generating
really terrible code for std::bitset (PR8980) because it happens to be lowered by clang
as an {[8 x i8]} structure instead of {i64}.
The testcase now is optimized to:
define i64 @test2(i64 %X) {
br label %L2
L2: ; preds = %0
ret i64 %X
}
before we generated:
define i64 @test2(i64 %X) {
%sroa.store.elt = lshr i64 %X, 56
%1 = trunc i64 %sroa.store.elt to i8
%sroa.store.elt8 = lshr i64 %X, 48
%2 = trunc i64 %sroa.store.elt8 to i8
%sroa.store.elt9 = lshr i64 %X, 40
%3 = trunc i64 %sroa.store.elt9 to i8
%sroa.store.elt10 = lshr i64 %X, 32
%4 = trunc i64 %sroa.store.elt10 to i8
%sroa.store.elt11 = lshr i64 %X, 24
%5 = trunc i64 %sroa.store.elt11 to i8
%sroa.store.elt12 = lshr i64 %X, 16
%6 = trunc i64 %sroa.store.elt12 to i8
%sroa.store.elt13 = lshr i64 %X, 8
%7 = trunc i64 %sroa.store.elt13 to i8
%8 = trunc i64 %X to i8
br label %L2
L2: ; preds = %0
%9 = zext i8 %1 to i64
%10 = shl i64 %9, 56
%11 = zext i8 %2 to i64
%12 = shl i64 %11, 48
%13 = or i64 %12, %10
%14 = zext i8 %3 to i64
%15 = shl i64 %14, 40
%16 = or i64 %15, %13
%17 = zext i8 %4 to i64
%18 = shl i64 %17, 32
%19 = or i64 %18, %16
%20 = zext i8 %5 to i64
%21 = shl i64 %20, 24
%22 = or i64 %21, %19
%23 = zext i8 %6 to i64
%24 = shl i64 %23, 16
%25 = or i64 %24, %22
%26 = zext i8 %7 to i64
%27 = shl i64 %26, 8
%28 = or i64 %27, %25
%29 = zext i8 %8 to i64
%30 = or i64 %29, %28
ret i64 %30
}
In this case, instcombine was able to eliminate the nonsense, but in PR8980 enough
PHIs are in play that instcombine backs off. It's better to not generate this stuff
in the first place.
llvm-svn: 123571
multiple uses. In some cases, all the uses are the same operation,
so instcombine can go ahead and promote the phi. In the testcase
this pushes an add out of the loop.
llvm-svn: 123568
The basic issue is that isel (very reasonably!) expects conditional branches
to be folded, so CGP leaving around a bunch dead computation feeding
conditional branches isn't such a good idea. Just fold branches on constants
into unconditional branches.
llvm-svn: 123526
have objectsize folding recursively simplify away their result when it
folds. It is important to catch this here, because otherwise we won't
eliminate the cross-block values at isel and other times.
llvm-svn: 123524
simplification present in fully optimized code (I think instcombine fails to
transform some of these when "X-Y" has more than one use). Fires here and
there all over the test-suite, for example it eliminates 8 subtractions in
the final IR for 445.gobmk, 2 subs in 447.dealII, 2 in paq8p etc.
llvm-svn: 123442
threading of shifts over selects and phis while there. This fires here and
there in the testsuite, to not much effect. For example when compiling spirit
it fires 5 times, during early-cse, resulting in 6 more cse simplifications,
and 3 more terminators being folded by jump threading, but the final bitcode
doesn't change in any interesting way: other optimizations would have caught
the opportunity anyway, only later.
llvm-svn: 123441
- Fixed :upper16: fix up routine. It should be shifting down the top 16 bits first.
- Added support for Thumb2 :lower16: and :upper16: fix up.
- Added :upper16: and :lower16: relocation support to mach-o object writer.
llvm-svn: 123424
While there, I noticed that the transform "undef >>a X -> undef" was wrong.
For example if X is 2 then the top two bits must be equal, so the result can
not be anything. I fixed this in the constant folder as well. Also, I made
the transform for "X << undef" stronger: it now folds to undef always, even
though X might be zero. This is in accordance with the LangRef, but I must
admit that it is fairly aggressive. Also, I added "i32 X << 32 -> undef"
following the LangRef and the constant folder, likewise fairly aggressive.
llvm-svn: 123417
This is a minor extension of SROA to handle a special case that is
important for some ARM NEON operations. Some of the NEON intrinsics
return multiple values, which are handled as struct types containing
multiple elements of the same vector type. The corresponding return
types declared in the arm_neon.h header have equivalent arrays. We
need SROA to recognize that it can split up those arrays and structs
into separate vectors, even though they are not always accessed with
the same type. SROA already handles loads and stores of an entire
alloca by using insertvalue/extractvalue to access the individual
pieces, and that code works the same regardless of whether the type
is a struct or an array. So, all that needs to be done is to check
for compatible arrays and homogeneous structs.
llvm-svn: 123381
SROA only split up structs and arrays one level at a time, so padding can
only cause trouble if it is located in between the struct or array elements.
llvm-svn: 123380
is "X != 0 -> X" when X is a boolean. This occurs a lot because of the way
llvm-gcc converts gcc's conditional expressions. Add this, and a few other
similar transforms for completeness.
llvm-svn: 123372
in the right direction. It eliminated some hacks and will unblock codegen
work. But it's far from being done. It doesn't reject illegal expressions,
e.g. (FOO - :lower16:BAR). It also doesn't work in Thumb2 mode at all.
llvm-svn: 123369
R_ARM_MOVT_PREL and R_ARM_MOVW_PREL_NC.
2. Fix minor bug in ARMAsmPrinter - treat bitfield flag as a bitfield, not an enum.
3. Add support for 3 new elf section types (no-ops)
llvm-svn: 123294
carry setting flag from the mnemonic.
Note that this currently involves me disabling a number of working cases in
arm_instructions.s, this is a hopefully short term evil which will be rapidly
fixed (and greatly surpassed), assuming my current approach flies.
llvm-svn: 123238
point values to their integer representation through the SSE intrinsic
calls. This is the last part of a README.txt entry for which I have real
world examples.
llvm-svn: 123206
There's an inherent tension in DAGCombine between assuming
that things will be put in canonical form, and the Depth
mechanism that disables transformations when recursion gets
too deep. It would not surprise me if there's a lot of little
bugs like this one waiting to be discovered. The mechanism
seems fragile and I'd suggest looking at it from a design viewpoint.
llvm-svn: 123191
larger memsets. Among other things, this fixes rdar://8760394 and
allows us to handle "Example 2" from http://blog.regehr.org/archives/320,
compiling it into a single 4096-byte memset:
_mad_synth_mute: ## @mad_synth_mute
## BB#0: ## %entry
pushq %rax
movl $4096, %esi ## imm = 0x1000
callq ___bzero
popq %rax
ret
llvm-svn: 123089
1. Rip out LoopRotate's domfrontier updating code. It isn't
needed now that LICM doesn't use DF and it is super complex
and gross.
2. Make DomTree updating code a lot simpler and faster. The
old loop over all the blocks was just to find a block??
3. Change the code that inserts the new preheader to just use
SplitCriticalEdge instead of doing an overcomplex
reimplementation of it.
No behavior change, except for the name of the inserted preheader.
llvm-svn: 123072
Add a unnamed_addr bit to global variables and functions. This will be used
to indicate that the address is not significant and therefore the constant
or function can be merged with others.
If an optimization pass can show that an address is not used, it can set this.
Examples of things that can have this set by the FE are globals created to
hold string literals and C++ constructors.
Adding unnamed_addr to a non-const global should have no effect unless
an optimization can transform that global into a constant.
Aliases are not allowed to have unnamed_addr since I couldn't figure
out any use for it.
llvm-svn: 123063
them into the loop preheader, eliminating silly instructions like
"icmp i32 0, 100" in fixed tripcount loops. This also better exposes the
bigger problem with loop rotate that I'd like to fix: once this has been
folded, the duplicated conditional branch *often* turns into an uncond branch.
Not aggressively handling this is pessimizing later loop optimizations
somethin' fierce by making "dominates all exit blocks" checks fail.
llvm-svn: 123060
Instead encode llvm IR level property "HasSideEffects" in an operand (shared
with IsAlignStack). Added MachineInstrs::hasUnmodeledSideEffects() to check
the operand when the instruction is an INLINEASM.
This allows memory instructions to be moved around INLINEASM instructions.
llvm-svn: 123044
X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
Instead of calculating this with mixed types promote all to the
larger type. This enables scalar evolution to analyze this
expression. PR8866
llvm-svn: 123034
Also fix an off-by-one in SelectionDAGBuilder that was preventing shuffle
vectors from being translated to EXTRACT_SUBVECTOR.
Patch by Tim Northover.
The test changes are needed to keep those spill-q tests from testing aligned
spills and restores. If the only aligned stack objects are spill slots, we
no longer realign the stack frame. Prior to this patch, an EXTRACT_SUBVECTOR
was legalized by loading from the stack, which created an aligned frame index.
Now, however, there is nothing except the spill slot in the stack frame, so
I added an aligned alloca.
llvm-svn: 122995
The theory is it's still faster than a pair of movq / a quad of movl. This
will probably hurt older chips like P4 but should run faster on current
and future Intel processors. rdar://8817010
llvm-svn: 122955
ret i64 ptrtoint (i8* getelementptr ([1000 x i8]* @X, i64 1, i64 sub (i64 0, i64 ptrtoint ([1000 x i8]* @X to i64))) to i64)
to "ret i64 1000". This allows us to correctly compute the trip count
on a loop in PR8883, which occurs with std::fill on a char array. This
allows us to transform it into a memset with a constant size.
llvm-svn: 122950