Guard widening should not spend efforts on dealing with guards with trivial true/false conditions.
Such guards can easily be eliminated by any further cleanup pass like instcombine. However we
should not unconditionally delete them because it may be profitable to widen other conditions
into such guards.
Differential Revision: https://reviews.llvm.org/D50247
Reviewed By: fedor.sergeev
llvm-svn: 340381
CodeGenPrepare has a strategy for moving dbg.values so that a value's
definition always dominates its debug users. This cleanup was happening
too early (before certain CGP transforms were run), resulting in some
dbg.value use-before-def errors.
Perform this cleanup as late as possible to avoid use-before-def.
llvm-svn: 340370
This test shows that optimizeSelectInst splits a select and sinks a
`fdiv` operation to one side of the diamond. However, the dbg.value for
the operation isn't moved.
llvm-svn: 340369
This is preparation for landing a use-before-def verifier for debug
intrinsics (D46100).
As a drive-by, remove `tail` from debug intrinsic calls because it
doesn't mean anything in that context.
llvm-svn: 340366
Currently CodeExtractor tries to use the next node after an invoke to
place the store for the result of the invoke, if it is an out parameter
of the region. This fails, as the invoke terminates the current BB.
In that case, we can place the store in the 'normal destination' BB, as
the result will only be available in that case.
Reviewers: davidxl, davide, efriedma
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D51037
llvm-svn: 340331
Currently we assign the same value number to two calls reading the same
memory location if we do not have MemoryDependence info. Without MemDep
Info we cannot guarantee that there is no store between the two calls, so we
have to assign a new number to the second call.
It also adds a new option EnableMemDep to enable/disable running
MemoryDependenceAnalysis and also renamed NoLoads to NoMemDepAnalysis to
be more explicit what it does. As it also impacts calls that read memory,
NoLoads is a bit confusing.
Reviewers: efriedma, sebpop, john.brawn, wmi
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D50893
llvm-svn: 340319
Remove duplicate tests from InstCombine that were added with
D50582. I left negative tests there to verify that nothing
in InstCombine tries to go overboard. If isKnownNeverNaN is
improved to handle the FP binops or other cases, we should
have coverage under InstSimplify, so we could remove more
duplicate tests from InstCombine at that time.
llvm-svn: 340279
Summary:
Follow up change to rL339703, where we now vectorize loops with non-phi
instructions used outside the loop. Note that the cyclic dependency
identification occurs when identifying reduction/induction vars.
We also need to identify that we do not allow users where the PSCEV information
within and outside the loop are different. This was the fix added in rL307837
for PR33706.
Reviewers: Ayal, mkuper, fhahn
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D50778
llvm-svn: 340278
This is a slight modification of the tests from D50582;
change half of the predicates to 'uno' so we have coverage
for that side too. All of the positive tests can fold to a
constant (true/false), so that should happen in instsimplify.
llvm-svn: 340276
This patch teaches LICM to hoist guards from the loop if they are guaranteed to execute and
if there are no side effects that could prevent that.
Differential Revision: https://reviews.llvm.org/D50501
Reviewed By: reames
llvm-svn: 340256
These intrinsics are modelled as writing for control flow purposes, but they don't actually write to any location. Marking these - as we did for guards - allows LICM to hoist loads out of loops containing invariant.starts.
Differential Revision: https://reviews.llvm.org/D50861
llvm-svn: 340245
NewGVN uses InstructionSimplify for simplifications of leaders of
congruence classes. It is not guaranteed that the metadata or other
flags/keywords (like nsw or exact) of the leader is available for all members
in a congruence class, so we cannot use it for simplification.
This patch adds a InstrInfoQuery struct with a boolean field
UseInstrInfo (which defaults to true to keep the current behavior as
default) and a set of helper methods to get metadata/keywords for a
given instruction, if UseInstrInfo is true. The whole thing might need a
better name, to avoid confusion with TargetInstrInfo but I am not sure
what a better name would be.
The current patch threads through InstrInfoQuery to the required
places, which is messier then it would need to be, if
InstructionSimplify and ValueTracking would share the same Query struct.
The reason I added it as a separate struct is that it can be shared
between InstructionSimplify and ValueTracking's query objects. Also,
some places do not need a full query object, just the InstrInfoQuery.
It also updates some interfaces that do not take a Query object, but a
set of optional parameters to take an additional boolean UseInstrInfo.
See https://bugs.llvm.org/show_bug.cgi?id=37540.
Reviewers: dberlin, davide, efriedma, sebpop, hiraditya
Reviewed By: hiraditya
Differential Revision: https://reviews.llvm.org/D47143
llvm-svn: 340031
This patch performs a widening transformation of bitwise atomicrmw
{or,xor,and} and applies it prior to tryExpandAtomicRMW. This operates
similarly to convertCmpXchgToIntegerType. For these operations, the i8/i16
atomicrmw can be implemented in terms of the 32-bit atomicrmw by appropriately
manipulating the operands. There is no functional change for the handling of
partword or/xor, but the transformation for partword 'and' is new.
The advantage of performing this transformation early is that the same
code-path can be used regardless of the approach used to expand the atomicrmw
(AtomicExpansionKind). i.e. the same logic is used for
AtomicExpansionKind::CmpXchg and can also be used by the intrinsic-based
expansion in D47882.
Differential Revision: https://reviews.llvm.org/D48129
llvm-svn: 340027
Summary:
Currently, in LICM, we use the alias set tracker to identify if the
instruction (we're interested in hoisting) aliases with instruction that
modifies that memory location.
This patch adds an LICM alias analysis diagnostic tool that checks the
mod ref info of the instruction we are interested in hoisting/sinking,
with every instruction in the loop. Because of O(N^2) complexity this
is now only a diagnostic tool to show the limitation we have with the
alias set tracker and is OFF by default.
Test cases show the difference with the diagnostic analysis tool, where
we're able to hoist out loads and readonly + argmemonly calls from the
loop, where the alias set tracker analysis is not able to hoist these
instructions out.
Reviewers: reames, mkazantsev, fedor.sergeev, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50854
llvm-svn: 340026
The description of `isGuaranteedToExecute` does not correspond to its implementation.
According to description, it should return `true` if an instruction is executed under the
assumption that its loop is *entered*. However there is a sophisticated alrogithm inside
that tries to prove that the instruction is executed if the loop is *exited*, which is not the
same thing for infinite loops. There is an attempt to protect from dealing with infinite loops
by prohibiting loops without exit blocks, however an infinite loop can have exit blocks.
As result of that, MustExecute can falsely consider some blocks that are never entered as
mustexec, and LICM can hoist dangerous instructions out of them basing on this fact.
This may introduce UB to programs which did not contain it initially.
This patch removes the problematic algorithm and replaced it with a one which tries to
prove what is required in description.
Differential Revision: https://reviews.llvm.org/D50558
Reviewed By: reames
llvm-svn: 339984
This is a follow-up suggested with rL339604.
For tan(), we don't have a corresponding LLVM
intrinsic -- unlike sin/cos -- so this is the
only way/place that we can do this fold currently.
llvm-svn: 339958
The fix is fairly simple, but is says something unpleasant about the usage and testing of invariant.start/end scopes that this went undetected. To put this in perspective, *any* invariant.end in a loop flowing through LICM crashed. I haven't bothered to figure out just how far back this goes, but it's not caused by any of the recent changes. We're probably talking months if not years.
llvm-svn: 339936
Expand the number of cases when `pow(x, 0.5)` is simplified into `sqrt(x)`
by considering the math semantics with more granularity.
Differential revision: https://reviews.llvm.org/D50036
llvm-svn: 339887
This patch fixes PR38125.
Instruction extension types are recorded in PromotedInsts, it can be used later in function canGetThrough. If an instruction has two users with different extension types, it will be inserted into PromotedInsts two times in function promoteOperandForOther. The second one overwrites the first one, and the final extension type is wrong, later causes problem in canGetThrough.
This patch changes the simple bool extension type to 2-bit enum type, add a BothExtension type in addition to zero/sign extension. When an user sees BothExtension for an instruction, it actually knows nothing about how that instruction is extended.
Differential Revision: https://reviews.llvm.org/D49512
llvm-svn: 339822
The `experimental_guard` intrinsic has memory write semantics to model the thread-exiting
logic, but does not do any actual writes to memory. Currently, `AliasSetTracker` treats it as a
normal memory write. As result, a loop-invariant load cannot be hoisted out of loop because
the guard may possibly alias with it.
This patch makes `AliasSetTracker` so that it doesn't treat guards as memory writes.
Differential Revision: https://reviews.llvm.org/D50497
Reviewed By: reames
llvm-svn: 339753
Summary:
This patch teaches the loop vectorizer to vectorize loops with non
header phis that have have outside uses. This is because the iteration
dependence distance for these phis can be widened upto VF (similar to
how we do for induction/reduction) if they do not have a cyclic
dependence with header phis. When identifying reduction/induction/first
order recurrence header phis, we already identify if there are any cyclic
dependencies that prevents vectorization.
The vectorizer is taught to extract the last element from the vectorized
phi and update the scalar loop exit block phi to contain this extracted
element from the vector loop.
This patch can be extended to vectorize loops where instructions other
than phis have outside uses.
Reviewers: Ayal, mkuper, mssimpso, efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50579
llvm-svn: 339703
Summary:
Calls marked 'tail' cannot read or write allocas from the current frame
because the current frame might be destroyed by the time they run.
However, a tail call may use an alloca with byval. Calling with byval
copies the contents of the alloca into argument registers or stack
slots, so there is no lifetime issue. Tail calls never modify allocas,
so we can return just ModRefInfo::Ref.
Fixes PR38466, a longstanding bug.
Reviewers: hfinkel, nlewycky, gbiv, george.burgess.iv
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D50679
llvm-svn: 339636
Summary:
This comes with `Implicit Conversion Sanitizer - integer sign change` (D50250):
```
signed char test(unsigned int x) { return x; }
```
`clang++ -fsanitize=implicit-conversion -S -emit-llvm -o - /tmp/test.cpp -O3`
* Old: {F6904292}
* With this patch: {F6904294}
General pattern:
X & Y
Where `Y` is checking that all the high bits (covered by a mask `4294967168`)
are uniform, i.e. `%arg & 4294967168` can be either `4294967168` or `0`
Pattern can be one of:
%t = add i32 %arg, 128
%r = icmp ult i32 %t, 256
Or
%t0 = shl i32 %arg, 24
%t1 = ashr i32 %t0, 24
%r = icmp eq i32 %t1, %arg
Or
%t0 = trunc i32 %arg to i8
%t1 = sext i8 %t0 to i32
%r = icmp eq i32 %t1, %arg
This pattern is a signed truncation check.
And `X` is checking that some bit in that same mask is zero.
I.e. can be one of:
%r = icmp sgt i32 %arg, -1
Or
%t = and i32 %arg, 2147483648
%r = icmp eq i32 %t, 0
Since we are checking that all the bits in that mask are the same,
and a particular bit is zero, what we are really checking is that all the
masked bits are zero.
So this should be transformed to:
%r = icmp ult i32 %arg, 128
The transform itself ended up being rather horrible, even though i omitted some cases.
Surely there is some infrastructure that can help clean this up that i missed?
https://rise4fun.com/Alive/3Ou
The initial commit (rL339610)
was reverted, since the first assert was being triggered.
The @positive_with_extra_and test now has coverage for that case.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: RKSimon, erichkeane, vsk, llvm-commits
Differential Revision: https://reviews.llvm.org/D50465
llvm-svn: 339621
Even though this code is below a function called optimizeFloatingPointLibCall(),
we apparently can't guarantee that we're dealing with FPMathOperators, so bail
out immediately if that's not true.
llvm-svn: 339618
At least one buildbot was able to actually trigger that assert
on the top of the function. Will investigate.
This reverts commit r339610.
llvm-svn: 339612
Summary:
This comes with `Implicit Conversion Sanitizer - integer sign change` (D50250):
```
signed char test(unsigned int x) { return x; }
```
`clang++ -fsanitize=implicit-conversion -S -emit-llvm -o - /tmp/test.cpp -O3`
* Old: {F6904292}
* With this patch: {F6904294}
General pattern:
X & Y
Where `Y` is checking that all the high bits (covered by a mask `4294967168`)
are uniform, i.e. `%arg & 4294967168` can be either `4294967168` or `0`
Pattern can be one of:
%t = add i32 %arg, 128
%r = icmp ult i32 %t, 256
Or
%t0 = shl i32 %arg, 24
%t1 = ashr i32 %t0, 24
%r = icmp eq i32 %t1, %arg
Or
%t0 = trunc i32 %arg to i8
%t1 = sext i8 %t0 to i32
%r = icmp eq i32 %t1, %arg
This pattern is a signed truncation check.
And `X` is checking that some bit in that same mask is zero.
I.e. can be one of:
%r = icmp sgt i32 %arg, -1
Or
%t = and i32 %arg, 2147483648
%r = icmp eq i32 %t, 0
Since we are checking that all the bits in that mask are the same,
and a particular bit is zero, what we are really checking is that all the
masked bits are zero.
So this should be transformed to:
%r = icmp ult i32 %arg, 128
https://rise4fun.com/Alive/3Ou
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: RKSimon, erichkeane, vsk, llvm-commits
Differential Revision: https://reviews.llvm.org/D50465
llvm-svn: 339610
Added a test case to reduction showing where it's illegal to identify
vectorize a loop.
Resetting the reduction var during loop iterations disallows us from
widening the dependency cycle to VF, thereby making it illegal to
vectorize the loop.
llvm-svn: 339605
This is a very partial fix for the reported problem. I suspect
we do not get this fold in most motivating cases because most of
the time, the libcall would have been replaced by an intrinsic,
and that optimization is handled elsewhere...but maybe it should
be handled here?
llvm-svn: 339604
This is a second part of D49974 that handles widening of conditional branches that
have very likely `false` branch.
Differential Revision: https://reviews.llvm.org/D50040
Reviewed By: reames
llvm-svn: 339537
Summary:
We've supported constant folding for sse versions for many years. This patch adds support for the avx512 versions including unsigned with the default rounding mode. We could probably do more with other roundings modes and SAE in the future.
The test cases are largely based on the sse.ll test cases. But I did add some test cases to ensure the unsigned versions don't accept negative values. Also checked the bounds of f64->i32 conversions to make sure unsigned has a larger positive range than signed.
Reviewers: RKSimon, spatel, chandlerc
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50553
llvm-svn: 339529
Try to improve the computed counts when it has been explicitly set by a pragma
or command line option. This moves the code around, so that first call to
computeUnrollCount to get a sensible count and override that if explicit unroll
and jam counts are specified.
Also added some extra debug messages for when unroll and jamming is disabled.
Differential Revision: https://reviews.llvm.org/D50075
llvm-svn: 339501
If we have an assume which is known to execute and whose operand is invariant, we can lift that into the pre-header. So long as we don't change which paths the assume executes on, this is a legal transformation. It's likely to be a useful canonicalization as other transforms only look for dominating assumes.
Differential Revision: https://reviews.llvm.org/D50364
llvm-svn: 339481
This includes a test that would have exposed the bug in rL339439
which was reverted at rL339446. The compare can be integer while
the binop is FP or vice-versa, so we need to use the binop type
when we ask for the identity constant.
llvm-svn: 339453
MemorySSA currently creates MemoryAccesses for lifetime intrinsics, and
sometimes treats them as clobbers. This may/may not be the best way
forward, but while we're doing it, we should consider
MayAlias/PartialAlias to be clobbers.
The ideal fix here is probably to remove all of this reasoning about
lifetimes from MemorySSA + put it into the passes that need to care. But
that's a wayyy broader fix that needs some consensus, and we have
miscompiles + a release branch today, and this should solve the
miscompiles just as well.
differential revision is D43269. Landing without an explicit LGTM (and
without using the special please-autoclose-this syntax) so we can still
use that revision as a place to decide what the right fix here is.
llvm-svn: 339411
The motivating case is an otherwise dead loop with a fence in it. At the moment, this goes all the way through the optimizer and we end up emitting an entirely pointless loop on x86. This case may seem a bit contrived, but we've seen it in real code as the result of otherwise reasonable lowering strategies combined w/thread local memory optimizations (such as escape analysis).
To handle this simple case, we can teach LICM to hoist must execute fences when there is no other memory operation within the loop.
Differential Revision: https://reviews.llvm.org/D50489
llvm-svn: 339378
Summary:
LoopSimplifyCFG should update ScEv for all loops after a block is deleted.
If the deleted block "Succ" is part of L, then it is part of all parent loops, so forget topmost loop.
Reviewers: greened, mkazantsev, sanjoy
Subscribers: jlebar, javed.absar, uabelho, llvm-commits
Differential Revision: https://reviews.llvm.org/D50422
llvm-svn: 339363
The inalloca parameter has to be the only parameter passed in memory.
Changing the convention to fastcc can break that.
At some point we should teach global opt how to optimize ABI attributes
like inalloca and maybe byval. These attributes are mainly used to match
C ABIs. They are harder for LLVM to optimize and they don't always
generate the best code.
Fixes PR38487
llvm-svn: 339360
The main interesting case is a fence in an otherwise dead loop or one containing only arithmetic. This can happen as a result of DSE or other transforms from seemingly reasonable initial IR.
llvm-svn: 339310
The scalar cases are handled in instcombine's internal
reassociation pass for FP ops, but it misses the vector types.
These patterns are similar to what was handled in InstSimplify in:
https://reviews.llvm.org/rL339171https://reviews.llvm.org/rL339174https://reviews.llvm.org/rL339176
...but we can't use instsimplify on these because we require negation
of the original operand.
llvm-svn: 339263
This accounts for the missing IR fold noted in D50195. We don't need any fast-math to enable the negation transform.
FP negation can always be folded into an fmul/fdiv constant to eliminate the fneg.
I've limited this to one-use to ensure that we are eliminating an instruction rather than replacing fneg by a
potentially expensive fdiv or fmul.
Differential Revision: https://reviews.llvm.org/D50417
llvm-svn: 339248
Summary:
https://rise4fun.com/Alive/IT3
Comes up in the [most ugliest] `signed int` -> `signed char` case of
`-fsanitize=implicit-conversion` (https://reviews.llvm.org/D50250)
Previously, we were stuck with `not`: {F6867736}
But now we are able to completely get rid of it: {F6867737}
(FIXME: why are we loosing the metadata? that seems wrong/strange.)
Here, we only want to do that it we will be able to completely
get rid of that 'not'.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: vsk, erichkeane, llvm-commits
Differential Revision: https://reviews.llvm.org/D50301
llvm-svn: 339243
Instcombine gets some, but not all, of these cases via
it's internal reassociation transforms. It fails in
all cases with vector types.
llvm-svn: 339168
Summary:
Reworked the previously committed patch to insert shuffles for reused
extract element instructions in the correct position. Previous logic was
incorrect, and might lead to the crash with PHIs and EH instructions.
Reviewers: efriedma, javed.absar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50143
llvm-svn: 339166
getOrCompHotCountThreshold/getOrCompColdCountThreshold introduced in
https://reviews.llvm.org/D45377 contain a bad mistake and will only return 1 or 0
instead of the true hot/cold cutoff value. The patch fixes the mistake. But the
mistake seems not causing big performance difference according to internal server
benchmarks testing.
Differential Revision: https://reviews.llvm.org/D50370
llvm-svn: 339162
In combineMetadata, we should be able to preserve K's nonnull metadata,
if K does not move. This condition should hold for all replacements by
NewGVN/GVN, but I added a bunch of assertions to verify that.
Fixes PR35038.
There probably are additional kinds of metadata that could be preserved
using similar reasoning. This is follow-up work.
Reviewers: dberlin, davide, efriedma, nlopes
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D47339
llvm-svn: 339149
Properly shrink `pow()` to `powf()` as a binary function and, when no other
simplification applies, do not discard it.
Differential revision: https://reviews.llvm.org/D50113
llvm-svn: 339046
The patch was reverted because of bug detected by sanitizer. The bug is fixed,
respective tests added.
Differential Revision: https://reviews.llvm.org/D50172
llvm-svn: 339005
Multiple failues reported by sanitizer-x86_64-linux, seem to be caused by this
patch. Reverting to see if they sustain without it.
Differential Revision: https://reviews.llvm.org/D50172
llvm-svn: 338994
`isKnownNonNullFromDominatingCondition` is able to prove non-null basing on `br` or `guard`
by `%p != null` condition, but is unable to do so basing on `(%p != null) && %other_cond`.
This patch allows it to do so.
Differential Revision: https://reviews.llvm.org/D50172
Reviewed By: reames
llvm-svn: 338990
If there is a frequently taken branch dominated by a guard, and its condition is available
at the point of the guard, we can widen guard with condition of this branch and convert
the branch into unconditional:
guard(cond1)
if (cond2) {
// taken in 99.9% cases
// do something
} else {
// do something else
}
Converts to
guard(cond1 && cond2)
// do something
Differential Revision: https://reviews.llvm.org/D49974
Reviewed By: reames
llvm-svn: 338988
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338969
https://rise4fun.com/Alive/IT3
Comes up in the [most ugliest] signed int -> signed char case of
-fsanitize=implicit-conversion (https://reviews.llvm.org/D50250)
Not sure if we want to do it always, or only when it is free to invert.
llvm-svn: 338967
Summary:
Previously, in the NewPM pipeline, TailCallElim recalculates the DomTree when it modifies any instruction in the Function.
For example,
```
CallInst *CI = dyn_cast<CallInst>(&I);
...
CI->setTailCall();
Modified = true;
...
if (!Modified || ...)
return PreservedAnalyses::all();
```
After applying this patch, the DomTree only recalculates if needed (plus an extra insertEdge() + an extra deleteEdge() call).
When optimizing SQLite with `-passes="default<O3>"` pipeline of the newPM, the number of DomTree recalculation decreases by 6.2%, the number of nodes visited by DFS decreases by 2.9%. The time used by DomTree will decrease approximately 1%~2.5% after applying the patch.
Statistics:
```
Before the patch:
23010 dom-tree-stats - Number of DomTree recalculations
489264 dom-tree-stats - Number of nodes visited by DFS -- DomTree
After the patch:
21581 dom-tree-stats - Number of DomTree recalculations
475088 dom-tree-stats - Number of nodes visited by DFS -- DomTree
```
Reviewers: kuhar, dmgreen, brzycki, grosser, davide
Reviewed By: kuhar, brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49982
llvm-svn: 338954
This is the second patch of the series which intends to enable jump threading for an inlined method whose return type is std::pair<int, bool> or std::pair<bool, int>.
The first patch is https://reviews.llvm.org/rL338485.
This patch handles code sequences that merges two values using `shl` and `or`, then extracts one value using `and`.
Differential Revision: https://reviews.llvm.org/D49981
llvm-svn: 338817
This one requires a bit of explaination. It's not every day you simply delete code to implement an optimization. :)
The transform in question is sinking an instruction from a loop to the uses in loop exiting blocks. We know (from LCSSA) that all of the uses outside the loop must be phi nodes, and after predecessor splitting, we know all phi users must have a single operand. Since the use must be strictly dominated by the def, we know from the definition of dominance/ssa that the exit block must execute along a (non-strict) subset of paths which reach the def. As a result, duplicating a potentially faulting instruction can not *introduce* a fault that didn't previously exist in the program.
The full story is that this patch builds on "rL338671: [LICM] Factor out fault legality from canHoistOrSinkInst [NFC]" which pulled this logic out of a common helper routine. As best I can tell, this check was originally added to the helper function for hoisting legality, later an incorrect fastpath for loads/calls was added, and then the bug was fixed by duplicating the fault safety check in the hoist path. This left the redundant check in the common code to pessimize sinking for no reason. I split it out in an NFC, and am not removing the unneccessary check. I wanted there to be something easy to revert in case I missed something.
Reviewed by: Anna Thomas (in person)
llvm-svn: 338794
At least on ELF, it's impossible to tell from the object file whether
two globals with the same section marking were merged: the merged global
uses "private" linkage to hide its symbol, and the aliases look like
regular symbols. I can't think of any other reason to disallow it.
(Of course, we can only merge globals in the same section.)
The weird alignment handling matches AsmPrinter; our alignment handling
for global variables should probably be refactored.
Differential Revision: https://reviews.llvm.org/D49822
llvm-svn: 338791
This adds the NAN checks suggested in PR37776:
https://bugs.llvm.org/show_bug.cgi?id=37776
If both operands to maxnum are NAN, that should get constant folded, so we don't
have to handle that case. This is the same assumption as other FP ops in this
function. Returning 'false' is always conservatively correct.
Copying from the bug report:
Currently, we have this for "when is cannotBeOrderedLessThanZero
(mustBePositiveOrNaN) true for maxnum":
L
-------------------
| Pos | Neg | NaN |
------------------------
|Pos | x | x | x |
------------------------
R |Neg | x | | x |
------------------------
|NaN | x | x | x |
------------------------
The cases with (Neg & NaN) are wrong. We should have:
L
-------------------
| Pos | Neg | NaN |
------------------------
|Pos | x | x | x |
------------------------
R |Neg | x | | |
------------------------
|NaN | x | | x |
------------------------
Differential Revision: https://reviews.llvm.org/D50081
llvm-svn: 338716
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338494
This patch intends to enable jump threading when a method whose return type is std::pair<int, bool> or std::pair<bool, int> is inlined.
For example, jump threading does not happen for the if statement in func.
std::pair<int, bool> callee(int v) {
int a = dummy(v);
if (a) return std::make_pair(dummy(v), true);
else return std::make_pair(v, v < 0);
}
int func(int v) {
std::pair<int, bool> rc = callee(v);
if (rc.second) {
// do something
}
SROA executed before the method inlining replaces std::pair by i64 without splitting in both callee and func since at this point no access to the individual fields is seen to SROA.
After inlining, jump threading fails to identify that the incoming value is a constant due to additional instructions (like or, and, trunc).
This series of patch add patterns in InstructionSimplify to fold extraction of members of std::pair. To help jump threading, actually we need to optimize the code sequence spanning multiple BBs.
These patches does not handle phi by itself, but these additional patterns help NewGVN pass, which calls instsimplify to check opportunities for simplifying instructions over phi, apply phi-of-ops optimization to result in successful jump threading.
SimplifyDemandedBits in InstCombine, can do more general optimization but this patch aims to provide opportunities for other optimizers by supporting a simple but common case in InstSimplify.
This first patch in the series handles code sequences that merges two values using shl and or and then extracts one value using lshr.
Differential Revision: https://reviews.llvm.org/D48828
llvm-svn: 338485
Workaround bug where the InstCombine pass was asserting on the IR added in lit
test, where we have a bitcast instruction after a GEP from an addrspace cast.
The second bitcast in the test was getting combined into
`bitcast <16 x i32>* %0 to <16 x i32> addrspace(3)*`, which looks like it should
be an addrspace cast instruction instead. Otherwise if control flow is allowed
to continue as it is now we create a GEP instruction
`<badref> = getelementptr inbounds <16 x i32>, <16 x i32>* %0, i32 0`. However
because the type of this instruction doesn't match the address space we hit an
assert when replacing the bitcast with that GEP.
```
void llvm::Value::doRAUW(llvm::Value*, bool): Assertion `New->getType() == getType() && "replaceAllUses of value with new value of different type!"' failed.
```
Differential Revision: https://reviews.llvm.org/D50058
llvm-svn: 338395
Summary:
When inserting lcssa Phi Nodes in the exit block
mak sure to preserve the original instructions DL.
Reviewers: vsk
Subscribers: JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D50009
llvm-svn: 338391
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338387
This is being done in order to make GVN able to better optimize certain inputs.
MemDep doesn't use PhiValues directly, but does need to notifiy it when things
get invalidated.
Differential Revision: https://reviews.llvm.org/D48489
llvm-svn: 338384
Summary:
If the ExtractElement instructions can be optimized out during the
vectorization and we need to reshuffle the parent vector, this
ShuffleInstruction may be inserted in the wrong place causing compiler
to produce incorrect code.
Reviewers: spatel, RKSimon, mkuper, hfinkel, javed.absar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49928
llvm-svn: 338380
This fold was written in an odd way and tried to avoid
an endless loop by bailing out on all constants instead
of the supposedly problematic case of -1. But (X & -1)
should always be simplified before we reach here, so I'm
not sure how that is a problem.
There were no tests for the commuted patterns, so I added
those at rL338364.
llvm-svn: 338367
Summary:
Normally, inling does not happen if caller does not have
"null-pointer-is-valid"="true" attibute but callee has it.
However, alwaysinline may force callee to be inlined.
In this case, if the caller has the "null-pointer-is-valid"="true"
attribute, copy the attribute to caller.
Reviewers: efriedma, a.elovikov, lebedev.ri, jyknight
Reviewed By: efriedma
Subscribers: eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D50000
llvm-svn: 338292
By using PhiValuesAnalysis we can get all the values reachable from a phi, so
we can be more precise instead of giving up when a phi has phi operands. We
can't make BaseicAA directly use PhiValuesAnalysis though, as the user of
BasicAA may modify the function in ways that PhiValuesAnalysis can't cope with.
For this optional usage to work correctly BasicAAWrapperPass now needs to be not
marked as CFG-only (i.e. it is now invalidated even when CFG is preserved) due
to how the legacy pass manager handles dependent passes being invalidated,
namely the depending pass still has a pointer to the now-dead dependent pass.
Differential Revision: https://reviews.llvm.org/D44564
llvm-svn: 338242
These are reassociated versions of the same pattern and
similar transforms as in rL338200 and rL338118.
The motivation is identical to those commits:
Patterns with add/sub combos can be improved using
'not' ops. This is better for analysis and may lead
to follow-on transforms because 'xor' and 'add' are
commutative/associative. It can also help codegen.
llvm-svn: 338221
https://rise4fun.com/Alive/jDd
Patterns with add/sub combos can be improved using
'not' ops. This is better for analysis and may lead
to follow-on transforms because 'xor' and 'add' are
commutative/associative. It can also help codegen.
llvm-svn: 338200
We now, from clang, can turn arrays of
static short g_data[] = {16, 16, 16, 16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0};
into structs of the form
@g_data = internal global <{ [8 x i16], [8 x i16] }> ...
GlobalOpt will incorrectly SROA it, not realising that the access to the first
element may overflow into the second. This fixes it by checking geps more
thoroughly.
I believe this makes the globalsra-partial.ll test case invalid as the %i value
could be out of bounds. I've re-purposed it as a negative test for this case.
Differential Revision: https://reviews.llvm.org/D49816
llvm-svn: 338192
The tests with constants show a missing optimization.
Analysis for adds is better than subs, so this can also
help with other transforms. And codegen is better with
adds for targets like x86 (destructive ops, no sub-from).
https://rise4fun.com/Alive/llK
llvm-svn: 338118
This is a follow-up for the patch rL335020. When we replace compares against
trunc with compares against wide IV, we can also replace signed predicates with
unsigned where it is legal.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D48763
llvm-svn: 338115
This commit includes unit tests for D48828, which enhances InstSimplify to enable jump threading with a method whose return type is std::pair<int, bool> or std::pair<bool, int>.
I am going to commit the actual transformation later.
llvm-svn: 338107
Summary:
r262157 added ELF-specific logic to put a comdat on the __profc_*
globals created for available_externally functions. We should be able to
generalize that logic to all object file formats that support comdats,
i.e. everything other than MachO. This fixes duplicate symbol errors,
since on COFF, linkonce_odr doesn't make the symbol weak.
Fixes PR38251.
Reviewers: davidxl, xur
Subscribers: hiraditya, dmajor, llvm-commits, aheejin
Differential Revision: https://reviews.llvm.org/D49882
llvm-svn: 338082
LowerDbgDeclare inserts a dbg.value before each use of an address
described by a dbg.declare. When inserting a dbg.value before a CallInst
use, however, it fails to append DW_OP_deref to the DIExpression.
The DW_OP_deref is needed to reflect the fact that a dbg.value describes
a source variable directly (as opposed to a dbg.declare, which relies on
pointer indirection).
This patch adds in the DW_OP_deref where needed. This results in the
correct values being shown during a debug session for a program compiled
with ASan and optimizations (see https://reviews.llvm.org/D49520). Note
that ConvertDebugDeclareToDebugValue is already correct -- no changes
there were needed.
One complication is that SelectionDAG is unable to distinguish between
direct and indirect frame-index (FRAMEIX) SDDbgValues. This patch also
fixes this long-standing issue in order to not regress integration tests
relying on the incorrect assumption that all frame-index SDDbgValues are
indirect. This is a necessary fix: the newly-added DW_OP_derefs cannot
be lowered properly otherwise. Basically the fix prevents a direct
SDDbgValue with DIExpression(DW_OP_deref) from being dereferenced twice
by a debugger. There were a handful of tests relying on this incorrect
"FRAMEIX => indirect" assumption which actually had incorrect
DW_AT_locations: these are all fixed up in this patch.
Testing:
- check-llvm, and an end-to-end test using lldb to debug an optimized
program.
- Existing unit tests for DIExpression::appendToStack fully cover the
new DIExpression::append utility.
- check-debuginfo (the debug info integration tests)
Differential Revision: https://reviews.llvm.org/D49454
llvm-svn: 338069
This fold is mentioned in PR38239:
https://bugs.llvm.org/show_bug.cgi?id=38239
The general case probably belongs in -reassociate, but given that we do
basic reassociation optimizations similar to this in instcombine already,
we might as well be consistent within instcombine and handle this pattern?
llvm-svn: 338038
Reuse the handling for llvm.used, and don't transform such globals.
Fixes a failure on the asan buildbot caused by my previous commit.
llvm-svn: 337973
In some cases LSV sees (load/store _ (select _ <pointer expression>
<pointer expression>)) patterns in input IR, often due to sinking and
other forms of CFG simplification, sometimes interspersed with
bitcasts and all-constant-indices GEPs. With this
patch`areConsecutivePointers` method would attempt to handle select
instructions. This leads to an increased number of successful
vectorizations.
Technically, select instructions could appear in index arithmetic as
well, however, we don't see those in our test suites / benchmarks.
Also, there is a lot more freedom in IR shapes computing integral
indices in general than in what's common in pointer computations, and
it appears that it's quite unreliable to do anything short of making
select instructions first class citizens of Scalar Evolution, which
for the purposes of this patch is most definitely an overkill.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D49428
llvm-svn: 337965
Instead of depending on implicit padding from the structure layout code,
use a packed struct and emit the padding explicitly.
Differential Revision: https://reviews.llvm.org/D49710
llvm-svn: 337961
as well as sext(C + x + ...) -> (D + sext(C-D + x + ...))<nuw><nsw>
similar to the equivalent transformation for zext's
if the top level addition in (D + (C-D + x * n)) could be proven to
not wrap, where the choice of D also maximizes the number of trailing
zeroes of (C-D + x * n), ensuring homogeneous behaviour of the
transformation and better canonicalization of such AddRec's
(indeed, there are 2^(2w) different expressions in `B1 + ext(B2 + Y)` form for
the same Y, but only 2^(2w - k) different expressions in the resulting `B3 +
ext((B4 * 2^k) + Y)` form, where w is the bit width of the integral type)
This patch generalizes sext(C1 + C2*X) --> sext(C1) + sext(C2*X) and
sext{C1,+,C2} --> sext(C1) + sext{0,+,C2} transformations added in
r209568 relaxing the requirements the following way:
1. C2 doesn't have to be a power of 2, it's enough if it's divisible by 2
a sufficient number of times;
2. C1 doesn't have to be less than C2, instead of extracting the entire
C1 we can split it into 2 terms: (00...0XXX + YY...Y000), keep the
second one that may cause wrapping within the extension operator, and
move the first one that doesn't affect wrapping out of the extension
operator, enabling further simplifications;
3. C1 and C2 don't have to be positive, splitting C1 like shown above
produces a sum that is guaranteed to not wrap, signed or unsigned;
4. in AddExpr case there could be more than 2 terms, and in case of
AddExpr the 2nd and following terms and in case of AddRecExpr the
Step component don't have to be in the C2*X form or constant
(respectively), they just need to have enough trailing zeros,
which in turn could be guaranteed by means other than arithmetics,
e.g. by a pointer alignment;
5. the extension operator doesn't have to be a sext, the same
transformation works and profitable for zext's as well.
Apparently, optimizations like SLPVectorizer currently fail to
vectorize even rather trivial cases like the following:
double bar(double *a, unsigned n) {
double x = 0.0;
double y = 0.0;
for (unsigned i = 0; i < n; i += 2) {
x += a[i];
y += a[i + 1];
}
return x * y;
}
If compiled with `clang -std=c11 -Wpedantic -Wall -O3 main.c -S -o - -emit-llvm`
(!{!"clang version 7.0.0 (trunk 337339) (llvm/trunk 337344)"})
it produces scalar code with the loop not unrolled with the unsigned `n` and
`i` (like shown above), but vectorized and unrolled loop with signed `n` and
`i`. With the changes made in this commit the unsigned version will be
vectorized (though not unrolled for unclear reasons).
How it all works:
Let say we have an AddExpr that looks like (C + x + y + ...), where C
is a constant and x, y, ... are arbitrary SCEVs. Let's compute the
minimum number of trailing zeroes guaranteed of that sum w/o the
constant term: (x + y + ...). If, for example, those terms look like
follows:
i
XXXX...X000
YYYY...YY00
...
ZZZZ...0000
then the rightmost non-guaranteed-zero bit (a potential one at i-th
position above) can change the bits of the sum to the left (and at
i-th position itself), but it can not possibly change the bits to the
right. So we can compute the number of trailing zeroes by taking a
minimum between the numbers of trailing zeroes of the terms.
Now let's say that our original sum with the constant is effectively
just C + X, where X = x + y + .... Let's also say that we've got 2
guaranteed trailing zeros for X:
j
CCCC...CCCC
XXXX...XX00 // this is X = (x + y + ...)
Any bit of C to the left of j may in the end cause the C + X sum to
wrap, but the rightmost 2 bits of C (at positions j and j - 1) do not
affect wrapping in any way. If the upper bits cause a wrap, it will be
a wrap regardless of the values of the 2 least significant bits of C.
If the upper bits do not cause a wrap, it won't be a wrap regardless
of the values of the 2 bits on the right (again).
So let's split C to 2 constants like follows:
0000...00CC = D
CCCC...CC00 = (C - D)
and represent the whole sum as D + (C - D + X). The second term of
this new sum looks like this:
CCCC...CC00
XXXX...XX00
----------- // let's add them up
YYYY...YY00
The sum above (let's call it Y)) may or may not wrap, we don't know,
so we need to keep it under a sext/zext. Adding D to that sum though
will never wrap, signed or unsigned, if performed on the original bit
width or the extended one, because all that that final add does is
setting the 2 least significant bits of Y to the bits of D:
YYYY...YY00 = Y
0000...00CC = D
----------- <nuw><nsw>
YYYY...YYCC
Which means we can safely move that D out of the sext or zext and
claim that the top-level sum neither sign wraps nor unsigned wraps.
Let's run an example, let's say we're working in i8's and the original
expression (zext's or sext's operand) is 21 + 12x + 8y. So it goes
like this:
0001 0101 // 21
XXXX XX00 // 12x
YYYY Y000 // 8y
0001 0101 // 21
ZZZZ ZZ00 // 12x + 8y
0000 0001 // D
0001 0100 // 21 - D = 20
ZZZZ ZZ00 // 12x + 8y
0000 0001 // D
WWWW WW00 // 21 - D + 12x + 8y = 20 + 12x + 8y
therefore zext(21 + 12x + 8y) = (1 + zext(20 + 12x + 8y))<nuw><nsw>
This approach could be improved if we move away from using trailing
zeroes and use KnownBits instead. For instance, with KnownBits we could
have the following picture:
i
10 1110...0011 // this is C
XX X1XX...XX00 // this is X = (x + y + ...)
Notice that some of the bits of X are known ones, also notice that
known bits of X are interspersed with unknown bits and not grouped on
the rigth or left.
We can see at the position i that C(i) and X(i) are both known ones,
therefore the (i + 1)th carry bit is guaranteed to be 1 regardless of
the bits of C to the right of i. For instance, the C(i - 1) bit only
affects the bits of the sum at positions i - 1 and i, and does not
influence if the sum is going to wrap or not. Therefore we could split
the constant C the following way:
i
00 0010...0011 = D
10 1100...0000 = (C - D)
Let's compute the KnownBits of (C - D) + X:
XX1 1 = carry bit, blanks stand for known zeroes
10 1100...0000 = (C - D)
XX X1XX...XX00 = X
--- -----------
XX X0XX...XX00
Will this add wrap or not essentially depends on bits of X. Adding D
to this sum, however, is guaranteed to not to wrap:
0 X
00 0010...0011 = D
sX X0XX...XX00 = (C - D) + X
--- -----------
sX XXXX XX11
As could be seen above, adding D preserves the sign bit of (C - D) +
X, if any, and has a guaranteed 0 carry out, as expected.
The more bits of (C - D) we constrain, the better the transformations
introduced here canonicalize expressions as it leaves less freedom to
what values the constant part of ((C - D) + x + y + ...) can take.
Reviewed By: mzolotukhin, efriedma
Differential Revision: https://reviews.llvm.org/D48853
llvm-svn: 337943
r337828 resolves a PredicateInfo issue with unnamed types.
Original message:
This patch updates IPSCCP to use PredicateInfo to propagate
facts to true branches predicated by EQ and to false branches
predicated by NE.
As a follow up, we should be able to extend it to also propagate additional
facts about nonnull.
Reviewers: davide, mssimpso, dberlin, efriedma
Reviewed By: davide, dberlin
llvm-svn: 337904
Summary: truncateToMinimalBitWidths() doesn't handle all Instructions and the worst case is compiler crash via llvm_unreachable(). Fix is to add a case to handle PHINode and changed the worst case to NO-OP (from compiler crash).
Reviewers: sbaranga, mssimpso, hsaito
Reviewed By: hsaito
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49461
llvm-svn: 337861
if the top level addition in (D + (C-D + x + ...)) could be proven to
not wrap, where the choice of D also maximizes the number of trailing
zeroes of (C-D + x + ...), ensuring homogeneous behaviour of the
transformation and better canonicalization of such expressions.
This enables better canonicalization of expressions like
1 + zext(5 + 20 * %x + 24 * %y) and
zext(6 + 20 * %x + 24 * %y)
which get both transformed to
2 + zext(4 + 20 * %x + 24 * %y)
This pattern is common in address arithmetics and the transformation
makes it easier for passes like LoadStoreVectorizer to prove that 2 or
more memory accesses are consecutive and optimize (vectorize) them.
Reviewed By: mzolotukhin
Differential Revision: https://reviews.llvm.org/D48853
llvm-svn: 337859
This is a workaround and it would be better to fix this generally, but
doing it generally is quite tricky. See D48541 and PR38117.
Doing it in PredicateInfo directly allows us to use the type address to
differentiate different unnamed types, because neither the created
declarations nor the ssa_copy calls should be visible after
PredicateInfo got destroyed.
Reviewers: efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D49126
llvm-svn: 337828
Summary:
Check if the parent basic block and caller exists
before calling CS.getCaller when constant folding
strip.invariant.group instrinsic.
This avoids a crash when the function containing the intrinsic
is being inlined. The instruction is checked for any simplifiction
but has not yet been added to a basic block.
Reviewers: Prazek, rsmith, efriedma
Reviewed By: efriedma
Subscribers: eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D49690
llvm-svn: 337742
In ConstructSSAForLoadSet if an available value is actually the load that we're
doing SSA construction to eliminate, then we can omit it as SSAUpdate will add
in the value for the phi that will be replacing it anyway. This can result in
simpler IR which can allow further optimisation.
Differential Revision: https://reviews.llvm.org/D44160
llvm-svn: 337686
Bug fix for PR37445. The underlying problem and its fix are similar to PR37808.
The bug lies in MemorySSAUpdater::getPreviousDefRecursive(), where PhiOps is
computed before the call to tryRemoveTrivialPhi() and it ends up being out of
date, pointing to stale data. We have now turned each of the PhiOps into a
TrackingVH<MemoryAccess>.
Differential Revision: https://reviews.llvm.org/D49425
llvm-svn: 337680
Bug fix for PR36787. When reasoning if it's safe to hoist a load we
want to make sure that the defining memory access dominates the new
insertion point of the hoisted instruction. safeToHoistLdSt calls
firstInBB(InsertionPoint,DefiningAccess) which returns false if
InsertionPoint == DefiningAccess, and therefore it falsely thinks
it's safe to hoist.
Differential Revision: https://reviews.llvm.org/D49555
llvm-svn: 337674
This reapplies commit r337489 reverted by r337541
Additionally, this commit contains a speculative fix to the issue reported in r337541
(the report does not contain an actionable reproducer, just a stack trace)
llvm-svn: 337606
This version contains a fix to add values for which the state in ParamState change
to the worklist if the state in ValueState did not change. To avoid adding the
same value multiple times, mergeInValue returns true, if it added the value to
the worklist. The value is added to the worklist depending on its state in
ValueState.
Original message:
For comparisons with parameters, we can use the ParamState lattice
elements which also provide constant range information. This improves
the code for PR33253 further and gets us closer to use
ValueLatticeElement for all values.
Also, as we are using the range information in the solver directly, we
do not need tryToReplaceWithConstantRange afterwards anymore.
Reviewers: dberlin, mssimpso, davide, efriedma
Reviewed By: mssimpso
Differential Revision: https://reviews.llvm.org/D43762
llvm-svn: 337548
It's more aggressive than we need to be, and leads to strange
workarounds in other places like call return value inference. Instead,
just directly mark an edge viable.
Tests by Florian Hahn.
Differential Revision: https://reviews.llvm.org/D49408
llvm-svn: 337507
This is mostly a preparation work for adding a limited support for
select instructions. It proved to be difficult to do due to size and
irregularity of Vectorizer::isConsecutiveAccess, this is fixed here I
believe.
It also turned out that these changes make it simpler to finish one of
the TODOs and fix a number of other small issues, namely:
1. Looking through bitcasts to a type of a different size (requires
careful tracking of the original load/store size and some math
converting sizes in bytes to expected differences in indices of GEPs).
2. Reusing partial analysis of pointers done by first attempt in proving
them consecutive instead of starting from scratch. This added limited
support for nested GEPs co-existing with difficult sext/zext
instructions. This also required a careful handling of negative
differences between constant parts of offsets.
3. Handing a case where the first pointer index is not an add, but
something else (a function parameter for instance).
I observe an increased number of successful vectorizations on a large
set of shader programs. Only few shaders are affected, but those that
are affected sport >5% less loads and stores than before the patch.
Reviewed By: rampitec
Differential-Revision: https://reviews.llvm.org/D49342
llvm-svn: 337489
Summary: Currently, isConsecutiveAccess() detects two pointers(PtrA and PtrB) as consecutive by
comparing PtrB with BaseDelta+PtrA. This works when both pointers are factorized or
both of them are not factorized. But isConsecutiveAccess() fails if one of the
pointers is factorized but the other one is not.
Here is an example:
PtrA = 4 * (A + B)
PtrB = 4 + 4A + 4B
This patch uses getMinusSCEV() to compute the distance between two pointers.
getMinusSCEV() allows combining the expressions and computing the simplified distance.
Author: FarhanaAleen
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D49516
llvm-svn: 337471
InstCombine has a cast transform that matches a cast-of-select:
Orig = cast (Src = select Cond TV FV)
And tries to replace it with a select which has the cast folded in:
NewSel = select Cond (cast TV) (cast FV)
The combiner does RAUW(Orig, NewSel), so any debug values for Orig would
survive the transform. But debug values for Src would be lost.
This patch teaches InstCombine to replace all debug uses of Src with
NewSel (taking care of doing any necessary DIExpression rewriting).
Differential Revision: https://reviews.llvm.org/D49270
llvm-svn: 337310
Once we resolved an undef in a function we can run Solve, which could
lead to finding a constant return value for the function, which in turn
could turn undefs into constants in other functions that call it, before
resolving undefs there.
Computationally the amount of work we are doing stays the same, just the
order we process things is slightly different and potentially there are
a few less undefs to resolve.
We are still relying on the order of functions in the IR, which means
depending on the order, we are able to resolve the optimal undef first
or not. For example, if @test1 comes before @testf, we find the constant
return value of @testf too late and we cannot use it while solving
@test1.
This on its own does not lead to more constants removed in the
test-suite, probably because currently we have to be very lucky to visit
applicable functions in the right order.
Maybe we manage to come up with a better way of resolving undefs in more
'profitable' functions first.
Reviewers: efriedma, mssimpso, davide
Reviewed By: efriedma, davide
Differential Revision: https://reviews.llvm.org/D49385
llvm-svn: 337283
TTI::getMinMaxReductionCost typically can't handle pointer types - until this is changed its better to limit horizontal reduction to integer/float vector types only.
llvm-svn: 337280
We are using i8 for these tests, and shifting by 4,
which is exactly the half of i8.
But as it is seen from the proofs https://rise4fun.com/Alive/mgu
KeptBits = bitwidth(%x) - MaskedBits,
so with using shifts by 4, we are not really testing that
we actually properly handle the other cases with shifts not by half...
llvm-svn: 337208
Summary:
[[ https://bugs.llvm.org/show_bug.cgi?id=38149 | PR38149 ]]
As discussed in https://reviews.llvm.org/D49179#1158957 and later,
the IR for 'check for [no] signed truncation' pattern can be improved:
https://rise4fun.com/Alive/gBf
^ that pattern will be produced by Implicit Integer Truncation sanitizer,
https://reviews.llvm.org/D48958https://bugs.llvm.org/show_bug.cgi?id=21530
in signed case, therefore it is probably a good idea to improve it.
Proofs for this transform: https://rise4fun.com/Alive/mgu
This transform is surprisingly frustrating.
This does not deal with non-splat shift amounts, or with undef shift amounts.
I've outlined what i think the solution should be:
```
// Potential handling of non-splats: for each element:
// * if both are undef, replace with constant 0.
// Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
// * if both are not undef, and are different, bailout.
// * else, only one is undef, then pick the non-undef one.
```
The DAGCombine will reverse this transform, see
https://reviews.llvm.org/D49266
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: JDevlieghere, rkruppe, llvm-commits
Differential Revision: https://reviews.llvm.org/D49320
llvm-svn: 337190
This reverts commit r337081, therefore restoring r337050 (and fix in
r337059), with test fix for bot failure described after the original
description below.
In order to always import the same copy of a linkonce function,
even when encountering it with different thresholds (a higher one then a
lower one), keep track of the summary we decided to import.
This ensures that the backend only gets a single definition to import
for each GUID, so that it doesn't need to choose one.
Move the largest threshold the GUID was considered for import into the
current module out of the ImportMap (which is part of a larger map
maintained across the whole index), and into a new map just maintained
for the current module we are computing imports for. This saves some
memory since we no longer have the thresholds maintained across the
whole index (and throughout the in-process backends when doing a normal
non-distributed ThinLTO build), at the cost of some additional
information being maintained for each invocation of ComputeImportForModule
(the selected summary pointer for each import).
There is an additional map lookup for each callee being considered for
importing, however, this was able to subsume a map lookup in the
Worklist iteration that invokes computeImportForFunction. We also are
able to avoid calling selectCallee if we already failed to import at the
same or higher threshold.
I compared the run time and peak memory for the SPEC2006 471.omnetpp
benchmark (running in-process ThinLTO backends), as well as for a large
internal benchmark with a distributed ThinLTO build (so just looking at
the thin link time/memory). Across a number of runs with and without
this change there was no significant change in the time and memory.
(I tried a few other variations of the change but they also didn't
improve time or peak memory).
The new commit removes a test that no longer makes sense
(Transforms/FunctionImport/hotness_based_import2.ll), as exposed by the
reverse-iteration bot. The test depends on the order of processing the
summary call edges, and actually depended on the old problematic
behavior of selecting more than one summary for a given GUID when
encountered with different thresholds. There was no guarantee even
before that we would eventually pick the linkonce copy with the hottest
call edges, it just happened to work with the test and the old code, and
there was no guarantee that we would end up importing the selected
version of the copy that had the hottest call edges (since the backend
would effectively import only one of the selected copies).
Reviewers: davidxl
Subscribers: mehdi_amini, inglorion, llvm-commits
Differential Revision: https://reviews.llvm.org/D48670
llvm-svn: 337184
Bug fix for PR37808. The regression test is a reduced version of the
original reproducer attached to the bug report. As stated in the report,
the problem was that InsertedPHIs was keeping dangling pointers to
deleted Memory-Phis. MemoryPhis are created eagerly and sometimes get
zapped shortly afterwards. I've used WeakVH instead of an expensive
removal operation from the active workset.
Differential Revision: https://reviews.llvm.org/D48372
llvm-svn: 337149
This fold is repeated/misplaced in instcombine, but I'm
not sure if it's safe to remove that yet because some
other folds appear to be asserting that the transform
has occurred within instcombine itself.
This isn't the best fix for PR37776, but it probably
hides the bug with the given code example:
https://bugs.llvm.org/show_bug.cgi?id=37776
We have another test to demonstrate the more general bug.
llvm-svn: 337127
This isn't the best fix for PR37776, but it probably
hides the bug with the given code example:
https://bugs.llvm.org/show_bug.cgi?id=37776
We have another test to demonstrate the more general
bug.
llvm-svn: 337126