This change now generates that list, and the change to clang-format allows
us to run clang-format quickly over these files via the list of files.
clang-format.exe -verbose -n --files=./clang/docs/tools/clang-formatted-files.txt
```
Clang-formating 7926 files
Formatting [1/7925] clang/bindings/python/tests/cindex/INPUTS/header1.h
..
Formatting [7925/7925] utils/bazel/llvm-project-overlay/llvm/include/llvm/Config/config.h
```
This is needed because putting all those files on the command line is too
long, and invoking 7900+ clang-formats is much slower (too slow to be honest)
Using this method it takes on 7.5 minutes (on my machine) to run
`clang-format -n` over all of the files (7925), this should result in us
testing any change quickly and easily.
We should be able to use rerunning this list to ensure that we don't regress
clang-format over a large code base, but also use it to ensure none of the
previous files which were 100% clang-formatted remain so.
(which the LLVM premerge checks should be enforcing)
Reviewed By: HazardyKnusperkeks
Differential Revision: https://reviews.llvm.org/D111000
Improve the clarity and guidance of the warning when using code modifying option in clang-format see {D69764}
Reviewed By: HazardyKnusperkeks, curdeius
Differential Revision: https://reviews.llvm.org/D110801
After significant problems in our downstream with the previous
implementation, the SYCL standard has opted to make using macros/etc to
change kernel-naming-lambdas in any way UB (even passively). As a
result, we are able to just emit the itanium mangling.
However, this DOES require a little work in the CXXABI, as the microsoft
and itanium mangler use different numbering schemes for lambdas. This
patch adds a pair of mangling contexts that use the normal 'itanium'
mangling strategy to fill in the "DeviceManglingNumber" used previously
by CUDA.
Differential Revision: https://reviews.llvm.org/D110281
Sometimes I see people unsure about which options they can use in specific versions of clang-format because
https://clang.llvm.org/docs/ClangFormatStyleOptions.html points to the latest and greatest versions.
The reality is this says its version 13.0, but actually anything we add now, will not be in 13.0 GA but
instead 14.0 GA (as 13.0 has already been branched).
How about we introduce some nomenclature to the Format.h so that we can mark which options in the
documentation were introduced for which version?
Reviewed By: HazardyKnusperkeks
Differential Revision: https://reviews.llvm.org/D110432
This patch adds a new preprocessor extension ``#pragma clang final``
which enables warning on undefinition and re-definition of macros.
The intent of this warning is to extend beyond ``-Wmacro-redefined`` to
warn against any and all alterations to macros that are marked `final`.
This warning is part of the ``-Wpedantic-macros`` diagnostics group.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D108567
Fix little inconsistency and use `std::string` (which is used everywhere
else) instead of `string`
Reviewed By: MyDeveloperDay, HazardyKnusperkeks
Differential Revision: https://reviews.llvm.org/D108765
Two typos, one unsused include and some leftovers from the TargetProcessControl -> ExecutorProcessControl renaming
Reviewed By: xgupta
Differential Revision: https://reviews.llvm.org/D110260
Developers these days seem to argue over east vs west const like they used to argue over tabs vs whitespace or the various bracing style. These previous arguments were mainly eliminated with tools like `clang-format` that allowed those rules to become part of your style guide. Anyone who has been using clang-format in a large team over the last couple of years knows that we don't have those religious arguments any more, and code reviews are more productive.
https://www.youtube.com/watch?v=fv--IKZFVO8https://mariusbancila.ro/blog/2018/11/23/join-the-east-const-revolution/https://www.youtube.com/watch?v=z6s6bacI424
The purpose of this revision is to try to do the same for the East/West const discussion. Move the debate into the style guide and leave it there!
In addition to the new `ConstStyle: Right` or `ConstStyle: Left` there is an additional command-line argument `--const-style=left/right` which would allow an individual developer to switch the source back and forth to their own style for editing, and back to the committed style before commit. (you could imagine an IDE might offer such a switch)
The revision works by implementing a separate pass of the Annotated lines much like the SortIncludes and then create replacements for constant type declarations.
Differential Revision: https://reviews.llvm.org/D69764
Add documentation of unbundling of heterogeneous device archives to
create device specific archives, as introduced by D93525. Also, add
documentation for supported text file formats.
Reviewed By: yaxunl
Differential Revision: https://reviews.llvm.org/D110083
The docs of alpha.cplusplus.SmartPtr was incorrectly placed under
alpha.deadcode. Moved it to under alpha.cplusplus
Differential Revision: https://reviews.llvm.org/D110032
Recently a vulnerability issue is found in the implementation of VLLDM
instruction in the Arm Cortex-M33, Cortex-M35P and Cortex-M55. If the
VLLDM instruction is abandoned due to an exception when it is partially
completed, it is possible for subsequent non-secure handler to access
and modify the partial restored register values. This vulnerability is
identified as CVE-2021-35465.
The mitigation sequence varies between v8-m and v8.1-m as follows:
v8-m.main
---------
mrs r5, control
tst r5, #8 /* CONTROL_S.SFPA */
it ne
.inst.w 0xeeb00a40 /* vmovne s0, s0 */
1:
vlldm sp /* Lazy restore of d0-d16 and FPSCR. */
v8.1-m.main
-----------
vscclrm {vpr} /* Clear VPR. */
vlldm sp /* Lazy restore of d0-d16 and FPSCR. */
More details on
developer.arm.com/support/arm-security-updates/vlldm-instruction-security-vulnerability
Differential Revision: https://reviews.llvm.org/D109157
SelectionDAG will promote illegal types up to a power of 2 before
splitting down to a legal type. This will create an IntegerType
with a bit width that must be <= MAX_INT_BITS. This places an
effective upper limit on any type of 2^23 so that we don't try
create a 2^24 type.
I considered putting a fatal error somewhere in the path from
TargetLowering::getTypeConversion down to IntegerType::get, but
limiting the type in IR seemed better.
This breaks backwards compatibility with IR that is using a really
large type. I suspect such IR is going to be very rare due to the
the compile time costs such a type likely incurs.
Prevents the ICE in PR51829.
Reviewed By: efriedma, aaron.ballman
Differential Revision: https://reviews.llvm.org/D109721
Update a section of OpenCLSupport page to reflect the latest
development in OpenCL 3.0 support for release 13.
Differential Revision: https://reviews.llvm.org/D109320
Earlier BundleEntryID used to be <OffloadKind>-<Triple>-<GPUArch>.
This used to work because the clang-offload-bundler didn't need
GPUArch explicitly for any bundling/unbundling action. With
unbundleArchive it needs GPUArch to ensure compatibility between
device specific code objects. D93525 enforced triples to have
separators for all 4 components irrespective of number of
components, like "amdgcn-amd-amdhsa--". It was required to
to correctly parse a possible 4th environment component or a GPU.
But, this condition is breaking backward compatibility with
archive libraries compiled with compilers older than D93525.
This patch allows triples to have any number of components with
and without extra separator for empty environment field. Thus,
both the following bundle entry IDs are same:
openmp-amdgcn-amd-amdhsa--gfx906
openmp-amdgcn-amd-amdhsa-gfx906
Reviewed By: yaxunl, grokos
Differential Revision: https://reviews.llvm.org/D106809
d8faf03807 implemented general-regs-only for X86 by disabling all features
with vector instructions. But the CRC32 instruction in SSE4.2 ISA, which uses
only GPRs, also becomes unavailable. This patch adds a CRC32 feature for this
instruction and allows it to be used with general-regs-only.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D105462
Add documentation of clang-nvlink-wrapper tool in clang.
Add it to the release notes of clang. Fix a small MSVC
warning.
Differential Revision: https://reviews.llvm.org/D109225
This reverts commit 2fbd254aa4, which broke the libc++ CI. I'm reverting
to get things stable again until we've figured out a way forward.
Differential Revision: https://reviews.llvm.org/D108696
Original commit message: "
Original commit message:"
The current infrastructure in lib/Interpreter has a tool, clang-repl, very
similar to clang-interpreter which also allows incremental compilation.
This patch moves clang-interpreter as a test case and drops it as conditionally
built example as we already have clang-repl in place.
Differential revision: https://reviews.llvm.org/D107049
"
This patch also ignores ppc due to missing weak symbol for __gxx_personality_v0
which may be a feature request for the jit infrastructure. Also, adds a missing
build system dependency to the orc jit.
"
Additionally, this patch defines a custom exception type and thus avoids the
requirement to include header <exception>, making it easier to deploy across
systems without standard location of the c++ headers.
Differential revision: https://reviews.llvm.org/D107049
Summary: Now in libcxx and clang, all the coroutine components are
defined in std::experimental namespace.
And now the coroutine TS is merged into C++20. So in the working draft
like N4892, we could find the coroutine components is defined in std
namespace instead of std::experimental namespace.
And the coroutine support in clang seems to be relatively stable. So I
think it may be suitable to move the coroutine component into the
experiment namespace now.
But move the coroutine component into the std namespace may be an break
change. So I planned to split this change into two patch. One in clang
and other in libcxx.
This patch would make clang lookup coroutine_traits in std namespace
first. For the compatibility consideration, clang would lookup in
std::experimental namespace if it can't find definitions in std
namespace and emit a warning in this case. So the existing codes
wouldn't be break after update compiler.
Test Plan: check-clang, check-libcxx
Reviewed By: lxfind
Differential Revision: https://reviews.llvm.org/D108696
The intent of this patch is to add support of -fp-model=[source|double|extended] to allow
the compiler to use a wider type for intermediate floating point calculations. As a side
effect to that, the value of FLT_EVAL_METHOD is changed according to the pragma
float_control.
Unfortunately some issue was uncovered with this change in preprocessing. See details in
https://reviews.llvm.org/D93769 . We are therefore reverting this patch until we find a way
to reconcile the value of FLT_EVAL_METHOD, the pragma and the -E flow.
This reverts commit 66ddac22e2.
Original commit message:"
The current infrastructure in lib/Interpreter has a tool, clang-repl, very
similar to clang-interpreter which also allows incremental compilation.
This patch moves clang-interpreter as a test case and drops it as conditionally
built example as we already have clang-repl in place.
Differential revision: https://reviews.llvm.org/D107049
"
This patch also ignores ppc due to missing weak symbol for __gxx_personality_v0
which may be a feature request for the jit infrastructure. Also, adds a missing
build system dependency to the orc jit.
The current infrastructure in lib/Interpreter has a tool, clang-repl, very
similar to clang-interpreter which also allows incremental compilation.
This patch moves clang-interpreter as a test case and drops it as conditionally
built example as we already have clang-repl in place.
Differential revision: https://reviews.llvm.org/D107049
This patch implements Clang support for an original OpenMP extension
we have developed to support OpenACC: the `ompx_hold` map type
modifier. The next patch in this series, D106510, implements OpenMP
runtime support.
Consider the following example:
```
#pragma omp target data map(ompx_hold, tofrom: x) // holds onto mapping of x
{
foo(); // might have map(delete: x)
#pragma omp target map(present, alloc: x) // x is guaranteed to be present
printf("%d\n", x);
}
```
The `ompx_hold` map type modifier above specifies that the `target
data` directive holds onto the mapping for `x` throughout the
associated region regardless of any `target exit data` directives
executed during the call to `foo`. Thus, the presence assertion for
`x` at the enclosed `target` construct cannot fail. (As usual, the
standard OpenMP reference count for `x` must also reach zero before
the data is unmapped.)
Justification for inclusion in Clang and LLVM's OpenMP runtime:
* The `ompx_hold` modifier supports OpenACC functionality (structured
reference count) that cannot be achieved in standard OpenMP, as of
5.1.
* The runtime implementation for `ompx_hold` (next patch) will thus be
used by Flang's OpenACC support.
* The Clang implementation for `ompx_hold` (this patch) as well as the
runtime implementation are required for the Clang OpenACC support
being developed as part of the ECP Clacc project, which translates
OpenACC to OpenMP at the directive AST level. These patches are the
first step in upstreaming OpenACC functionality from Clacc.
* The Clang implementation for `ompx_hold` is also used by the tests
in the runtime implementation. That syntactic support makes the
tests more readable than low-level runtime calls can. Moreover,
upstream Flang and Clang do not yet support OpenACC syntax
sufficiently for writing the tests.
* More generally, the Clang implementation enables a clean separation
of concerns between OpenACC and OpenMP development in LLVM. That
is, LLVM's OpenMP developers can discuss, modify, and debug LLVM's
extended OpenMP implementation and test suite without directly
considering OpenACC's language and execution model, which can be
handled by LLVM's OpenACC developers.
* OpenMP users might find the `ompx_hold` modifier useful, as in the
above example.
See new documentation introduced by this patch in `openmp/docs` for
more detail on the functionality of this extension and its
relationship with OpenACC. For example, it explains how the runtime
must support two reference counts, as specified by OpenACC.
Clang recognizes `ompx_hold` unless `-fno-openmp-extensions`, a new
command-line option introduced by this patch, is specified.
Reviewed By: ABataev, jdoerfert, protze.joachim, grokos
Differential Revision: https://reviews.llvm.org/D106509
Add a new option PackConstructorInitializers and deprecate the
related options ConstructorInitializerAllOnOneLineOrOnePerLine and
AllowAllConstructorInitializersOnNextLine. Below is the mapping:
PackConstructorInitializers ConstructorInitializer... AllowAll...
Never - -
BinPack false -
CurrentLine true false
NextLine true true
The option value Never fixes PR50549 by always placing each
constructor initializer on its own line.
Differential Revision: https://reviews.llvm.org/D108752
MallocOverflow works in two phases:
1) Collects suspicious malloc calls, whose argument is a multiplication
2) Filters the aggregated list of suspicious malloc calls by iterating
over the BasicBlocks of the CFG looking for comparison binary
operators over the variable constituting in any suspicious malloc.
Consequently, it suppressed true-positive cases when the comparison
check was after the malloc call.
In this patch the checker will consider the relative position of the
relation check to the malloc call.
E.g.:
```lang=C++
void *check_after_malloc(int n, int x) {
int *p = NULL;
if (x == 42)
p = malloc(n * sizeof(int)); // Previously **no** warning, now it
// warns about this.
// The check is after the allocation!
if (n > 10) {
// Do something conditionally.
}
return p;
}
```
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D107804
Previously by following the documentation it was not immediately clear
what the capabilities of this checker are.
In this patch, I add some clarification on when does the checker issue a
report and what it's limitations are.
I'm also advertising suppressing such reports by adding an assertion, as
demonstrated by the test3().
I'm highlighting that this checker might produce an extensive amount of
findings, but it might be still useful for code audits.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D107756