Currently there is no way to describe the data that is not a part of an output section.
It can be a data used to align sections or to fill the gaps with something,
or another kind of custom data. In this patch I suggest a way to describe it. It looks like that:
```
Sections:
- Type: CustomFiller
Pattern: "CCDD"
Size: 4
- Name: .bar
Type: SHT_PROGBITS
Content: "FF"
```
I.e. I've added a kind of synthetic section with a synthetic type "CustomFiller".
In the code it is called a "SyntheticFiller", which is "a synthetic section which
might be used to write the custom data around regular output sections. It does
not present in the sections header table, but it might affect the output file size and
program headers produced. Think about it as about piece of data."
`SyntheticFiller` currently has a `Pattern` field and a `Size` field + an optional `Name`.
When written, `Size` of bytes in the output will be filled with a `Pattern`.
It is possible to reference a named filler it by name from the program headers description,
just like any other normal section.
Differential revision: https://reviews.llvm.org/D69709
Summary:Add the setTargetNode member function to class DGEdge.
Authored By:etiotto
Reviewer:bmahjour, Whitney, jdoerfert, Meinersbur, fhahn, kbarton,
dmgreen
Reviewed By:Meinersbur
Subscribers:dexonsmith, kristina, llvm-commits
Tag:LLVM
Differential Revision:https://reviews.llvm.org/D68474
This reverts commit bcbb121ff6.
Using 'ls -o' is not compatible way to fix the problem. FreeBSD and OSX
version of 'ls' do not support -o flag and test gets failed on these
platforms.
Differential Revision: https://reviews.llvm.org/D69317
The _m64 type is represented in IR as <1 x i64>. The x86-64 ABI
on Linux passes <1 x i64> as a double. MMX intrinsics use x86_mmx
type in IR.These things result in a lot of bitcasts in mmx code.
There's another instcombine that tries to turn bitcast <1 x i64>
to double into extractelement and a bitcast.
The combine here tries to reverse this extractelement conversion
if we see an mmx type.
Re-try rGef02831f0a4e (reverted due to use-after-free), but bail out completely
if we encounter an unexpected llvm.invariant.start.
We gather a set of white-listed instructions in isAllocSiteRemovable() and then
replace/erase them. But we don't know in general if the instructions in the set
have uses amongst themselves, so order of deletion makes a difference.
There's already a special-case for the llvm.objectsize intrinsic, so add another
for llvm.invariant.end.
Should fix:
https://bugs.llvm.org/show_bug.cgi?id=43723
Differential Revision: https://reviews.llvm.org/D69977
Summary: A helper function to get argument number of a arg operand Use.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, lebedev.ri, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66844
The other paremeters appear to be sufficient to determine which modules
have just been loaded and need to be removed, so stop collecting and
sending in that set explicitly.
Summary: When using the split sp adjustment and using the frame-pointer
we were still emitting CFI CFA directives based on the sp value. The
final sp-based offset also didn't reflect the two-stage sp adjust. There
remain CFI issues that aren't related to the split sp adjustment, and
thus will be addressed in a separate patch.
Reviewers: asb, lenary, shiva0217
Reviewed By: lenary, shiva0217
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69385
Summary: Adds tests necessary to properly show the impact of other
patches that affect the emission of CFI directives.
Reviewers: asb, lenary
Reviewed By: lenary
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69721
We gather a set of white-listed instructions in isAllocSiteRemovable() and then
replace/erase them. But we don't know in general if the instructions in the set
have uses amongst themselves, so order of deletion makes a difference.
There's already a special-case for the llvm.objectsize intrinsic, so add another
for llvm.invariant.end.
Should fix:
https://bugs.llvm.org/show_bug.cgi?id=43723
Differential Revision: https://reviews.llvm.org/D69977
Summary:This patch fixes the following warnings uncovered by PVS
Studio:
/home/xbolva00/LLVM/llvm-project/llvm/lib/Analysis/LoopCacheAnalysis.cpp
353 warn V612 An unconditional 'return' within a loop.
/home/xbolva00/LLVM/llvm-project/llvm/lib/Analysis/LoopCacheAnalysis.cpp
456 err V502 Perhaps the '?:' operator works in a different way than it
was expected. The '?:' operator has a lower priority than the '=='
operator.
Authored By:etiotto
Reviewer:Meinersbur, kbarton, bmahjour, Whitney, xbolva00
Reviewed By:xbolva00
Subscribers:hiraditya, llvm-commits
Tag:LLVM
Differential Revision:https://reviews.llvm.org/D69821
This recommits 11ed1c0239 (reverted in
9f08ce0d21 for failing an assert) with a fix:
tryToWidenMemory() now first checks if the widening decision is to interleave,
thus maintaining previous behavior where tryToInterleaveMemory() was called
first, giving priority to interleave decisions over widening/scalarization. This
commit adds the test case that exposed this bug as a LIT.
This patch introduced a new bpf specific attribute which can
be added to struct or union definition. For example,
struct s { ... } __attribute__((preserve_access_index));
union u { ... } __attribute__((preserve_access_index));
The goal is to simplify user codes for cases
where preserve access index happens for certain struct/union,
so user does not need to use clang __builtin_preserve_access_index
for every members.
The attribute has no effect if -g is not specified.
When the attribute is specified and -g is specified, any member
access defined by that structure or union, including array subscript
access and inner records, will be preserved through
__builtin_preserve_{array,struct,union}_access_index()
IR intrinsics, which will enable relocation generation
in bpf backend.
The following is an example to illustrate the usage:
-bash-4.4$ cat t.c
#define __reloc__ __attribute__((preserve_access_index))
struct s1 {
int c;
} __reloc__;
struct s2 {
union {
struct s1 b[3];
};
} __reloc__;
struct s3 {
struct s2 a;
} __reloc__;
int test(struct s3 *arg) {
return arg->a.b[2].c;
}
-bash-4.4$ clang -target bpf -g -S -O2 t.c
A relocation with access string "0:0:0:0:2:0" will be generated
representing access offset of arg->a.b[2].c.
forward declaration with attribute is also handled properly such
that the attribute is copied and populated in real record definition.
Differential Revision: https://reviews.llvm.org/D69759
This change would have warned about the bug found in D62451.
No unit tests since the exception should never throw.
Differential Revision: https://reviews.llvm.org/D62452
Before when the overflow occured an assertion was triggered. Now check
whether the maximum has been reached and warn properly.
This patch fixes the original submission of PR19607.
Differential Revision: https://reviews.llvm.org/D63975