Sadly this loses the checking from AssertingVH, but apparently storing the
end() of a BasicBlock into an AssertingVH has bad consequences as it's not
really an instruction.
llvm-svn: 192209
Patch by Vladimir Voskresensky. The erros were:
Path.inc:274:3: error: ‘Dl_info’ was not declared in this scope
...
and
usr/include/spawn.h:52:14: error: expected ‘,’ or ‘...’ before ‘argv’
llvm-svn: 192185
This patch fixes an old FIXME by creating a MCTargetStreamer interface
and moving the target specific functions for ARM, Mips and PPC to it.
The ARM streamer is still declared in a common place because it is
used from lib/CodeGen/ARMException.cpp, but the Mips and PPC are
completely hidden in the corresponding Target directories.
I will send an email to llvmdev with instructions on how to use this.
llvm-svn: 192181
from struct byval to registers.
We used to pass 0 which means the alignment of PtrVT. Even when the alignment
of the struct is smaller than 4, the LOADs would have alignment of 4, and
further optimizations could combine the LOADs into a ldm, which would
cause crash.
The fix is to pass the alignment of the struct byval.
rdar://problem/15144402
llvm-svn: 192126
accumulator instead of its sub-registers, $hi and $lo.
We need this change to prevent a mflo following a mtlo from reading an
unpredictable/undefined value, as shown in the following example:
mult $6, $7 // result of $6 * $7 is written to $lo and $hi.
mflo $2 // read lower 32-bit result from $lo.
mtlo $4 // write to $lo. the content of $hi becomes unpredictable.
mfhi $3 // read higher 32-bit from $hi, which has an unpredictable value.
I don't have a test case for this change that reliably reproduces the problem.
llvm-svn: 192119
Support for exception handling in the legacy JIT was removed in r181354 and
this code was dead since then.
Thanks to Yaron Keren for noticing it.
llvm-svn: 192101
The hint instructions ("nop", "yield", etc) are mostly Thumb2-only, but have
been ported across to the v6M architecture. Fortunately, v6M seems to sit
nicely between v6 (thumb-1 only) and v6T2, so we can add a feature for it
fairly easily.
rdar://problem/15144406
llvm-svn: 192097
This addresses several issues in a similar vein:
- Use the Unicode APIs when possible, running nm on clang shows that we
only use Unicode APIs except for FormatMessage, CreateSemaphore, and
GetModuleHandle. AFAICT, the latter two are coming from MinGW and
not LLVM itself.
- Make getMainExecutable more resilient. It previously considered
return values of zero from ::GetModuleFileNameA to be acceptable.
llvm-svn: 192096
This allows the instruction to be encoded using the 2-byte VEX form instead of the 3-byte VEX form. The GNU assembler has similar behavior and instruction selection already does this.
llvm-svn: 192088
Summary:
The MSVCRT deliberately sends main() code-page specific characters.
This isn't too useful to LLVM as we end up converting the arguments to
UTF-16 and subsequently attempt to use the result as, for example, a
file name. Instead, we need to have the ability to access the Unicode
command line and transform it to UTF-8.
This has the distinct advantage over using the MSVC-specific wmain()
function as our entry point because:
- It doesn't work on cygwin.
- It only work on MinGW with caveats and only then on certain versions.
- We get to keep our entry point as main(). :)
N.B. This patch includes fixes to other parts of lib/Support/Windows
s.t. we would be able to take advantage of getting the Unicode paths.
E.G. clang spawning clang -cc1 would want to give it Unicode arguments.
Reviewers: aaron.ballman, Bigcheese, rnk, ruiu
Reviewed By: rnk
CC: llvm-commits, ygao
Differential Revision: http://llvm-reviews.chandlerc.com/D1834
llvm-svn: 192069
The most likely case where this error happens is when the user specifies
too many register operands. Don't make it look like an internal LLVM bug
when we can see that the error is coming from an inline asm instruction.
For other instructions we keep the "ran out of registers" error.
llvm-svn: 192041
When MC was first added, targets could use hasRawTextSupport to keep features
working before they were added to the MC interface.
The design goal of MC is to provide an uniform api for printing assembly and
object files. Short of relaxations and other corner cases, a object file is
just another representation of the assembly.
It was never the intention that targets would keep doing things like
if (hasRawTextSupport())
Set flags in one way.
else
Set flags in another way.
When they do that they create two code paths and the object file is no longer
just another representation of the assembly. This also then requires testing
with llc -filetype=obj, which is extremelly brittle.
This patch removes some of these hacks by replacing them with smaller ones.
The ARM flag setting is trivial, so I just moved it to the constructor. For
Mips, the patch adds two temporary hack directives that allow the assembly
to represent the same things as the object file was already able to.
The hope is that the mips developers will replace the hack directives with
the same ones that gas uses and drop the -print-hack-directives flag.
I will also try to implement a target streamer interface, so that we can
move this out of the common code.
In summary, for any new work, two rules of the thumb are
* Don't use "llc -filetype=obj" in tests.
* Don't add calls to hasRawTextSupport.
llvm-svn: 192035
is updated to use DITypeRef.
Move isUnsignedDIType and getOriginalTypeSize from DebugInfo.h to be static
helper functions in DwarfCompileUnit. We already have a static helper function
"isTypeSigned" in DwarfCompileUnit, and a pointer to DwarfDebug is added to
resolve the derived-from field. All three functions need to go across link
for derived-from fields, so we need to get hold of a type identifier map.
A pointer to DwarfDebug is also added to DbgVariable in order to resolve the
derived-from field.
Debug info verifier is updated to check a derived-from field is a TypeRef.
Verifier will not go across link for derived-from fields, in debug info finder,
we go across the link to add derived-from fields to types.
Function getDICompositeType is only used by dragonegg and since dragonegg does
not generate identifier for types, we use an empty map to resolve the
derived-from field.
When printing a derived-from field, we use DITypeRef::getName to either return
the type identifier or getName of the DIType.
A paired commit at clang is required due to changes to DIBuilder.
llvm-svn: 192018
UpdatePHINodes has an optimization to reuse an existing PHI node, where it
first deletes all of its entries and then replaces them. Unfortunately, in the
case where we had duplicate predecessors (which are allowed so long as the
associated PHI entries have the same value), the loop removing the existing PHI
entries from the to-be-reused PHI would assert (if that PHI was not the one
which had the duplicates).
llvm-svn: 192001
DAGCombiner::visitFP_EXTEND will apply the following transformation:
fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
but the implementation does not handle indexed loads (pre/post inc.), but did
not specifically ignore them either (unlike for extending loads, which it
already ignored), causing an assert when the transformation was applied to an
indexed load. This is the minimal fix for correctness (causing the
transformation to be skipped for indexed loads).
Unfortunately, I don't have an in-tree test case.
llvm-svn: 191989
This patch handles LLVM standalone assembler (llvm-mc) ELF flag setting based on input file
directive processing.
Mips assembly requires processing inline directives that directly and
indirectly affect the output ELF header flags. This patch handles one
".abicalls".
To process these directives we are following the model the code generator
uses by storing state in a container as we go through processing and when
we detect the end of input file processing, AsmParser is notified and we
update the ELF header flags through a MipsELFStreamer method with a call from
MCTargetAsmParser::emitEndOfAsmFile(MCStreamer &OutStreamer).
This patch will allow other targets the same functionality.
Jack
llvm-svn: 191982
Sort the operands of the other entries in the current vectorization root
according to the first entry's operands opcodes.
%conv0 = uitofp ...
%load0 = load float ...
= fmul %conv0, %load0
= fmul %load0, %conv1
= fmul %load0, %conv2
Make sure that we recursively vectorize <%conv0, %conv1, %conv2> and <%load0,
%load0, %load0>.
This makes it more likely to obtain vectorizable trees. We have to be careful
when we sort that we don't destroy 'good' existing ordering implied by source
order.
radar://15080067
llvm-svn: 191977
optimizeSelect folds (predicated) copy instructions, it must not ignore
the original register class of the operand when replacing the register
with the copies dest register.
llvm-svn: 191963
The jump doesn't really kill the registers, the following call does but
we never get back anyway.
This avoids some verify-machineinstrs problems when TAILJUMPs are
if-converted.
llvm-svn: 191962
In the case (shown in the attached test) where a member function
definition was emitted into debug info the following could occur:
1) build the debug info for the member function definition
2) in (1), build the debug info for the member function declaration
3) construct and add the member function declaration DIE
4) add it to its context
5) build its context (the type it is a member of)
6) construct the members and add them to the type
7) except don't add member functions because "getOrCreateSubprogram"
adds the function to its parent anyway
8) except we're only partway through building this subprogram
declaration so it hasn't been added yet - but we returned the partially
constructed DIE (since it's already in the MDNode->DIE mapping to avoid
infinitely recursing trying to create the member function DIE)
9) once the type is constructed, add the member function to it
10) now the members are out of order (the member function being defined
is listed as the last member, even though it was declared as the first)
To avoid this, construct the context of the subprogram DIE before we
query to see if it exists. That way we never end up creating it before
creating its context and ending up in this situation.
Alternatively, the type construction that visits/builds all the members
could call something like getOrCreateSubprogram, but that doesn't ever
do the "add to context" step. Then the type building code would always
be responsible for adding members (and the subprogram "addToContextDIE"
would no-op because the context building would have added the subprogram
declaration to the type/context DIE already).
(the test cases updated were overly-sensitive to offsets or abbreviation
numbers. We don't have a nice way to make these tests more robust as yet
- multiline FileCheck matches would be required)
llvm-svn: 191939
Changed the dwarf aranges code to not use getLabelEndName, as it turns out it's not reliable to call that given user-defined section names. Section names can have characters in that aren't representable as symbol names.
The dwarf-aranges test case has been updated to include a special character, to check this.
This fixes pr17416.
llvm-svn: 191932
DIE::addChild had a shortcircuit that silently no-op'd when a child was
readded to the same parent. This hid some quirky/redundant code in
DwarfDebug/CompileUnit. By removing that functionality and replacing it
with an assert I was able to find and cleanup those cases, mostly
centering around adding members to types in various circumstances.
1) The original oddity I noticed while working on type units (which
actually was helping me in the short term, by accident) was the
addToContextOwner call in constructTypeDIE. This call was completely
bogus (why was it only done for non-virtual types? what relevance does
that have at all) and redundant with the more uniform addToContextOwner
made in getOrCreateTypeDIE.
2) If a member function definition was visited (createSubprogramDIE), it
would attempt to build the member function declaration. The declaration
DIE would then be added to its context, but in building the context (the
type for which this function is a member) the members of the type would
be added to the type automatically, so by the time the context was
constructed, the member function was already associated with it.
3) The same as (2) but without the member function being constructed
first. Whenever a type was constructed, the members would be created and
member functions would be created by getOrCreateSubprogramDIE - this
would lead to the subprogram being added to the (incomplete) type
already, then the general member-construction code would add it again.
llvm-svn: 191928
Generalize the API so we can distinguish symbols that are needed just for a DSO
symbol table from those that are used from some native .o.
The symbols that are only wanted for the dso symbol table can be dropped if
llvm can prove every other dso has a copy (linkonce_odr) and the address is not
important (unnamed_addr).
llvm-svn: 191922
itinerary model in case the target does not supply a scheduling model.
By doing this, targets like cortex-a8 can benefit from the latency printing
feature added in r191859.
This part of <rdar://problem/14687488>.
llvm-svn: 191916
The heuristic was added to avoid spending too much compile time A specially
crafted test case (PR17461, PR16474) with many uses on a select or bitcast
instruction can still trigger the slow case. Add a check for that case.
This only affects compile time, don't have a good way to test it.
llvm-svn: 191896
r191052 added emitting .debug_aranges to Clang, but this
functionality is broken: it uses all MC labels added in DWARF Asm
printer, including the labels for build relocations between
different DWARF sections, like .Lsection_line or .Ldebug_loc0.
As a result, if any DIE .debug_info would contain "DW_AT_location=0x123"
attribute, .debug_aranges would also contain a range starting from 0x123,
breaking tools that rely on this section.
This patch fixes this by using only MC labels that corresponds to the
addresses in the user program.
llvm-svn: 191884
classes that are marked as Variant as those require an MI to pass to
SubTargetInfo::resolveSchedClass.
This is part of <rdar://problem/14687488>.
llvm-svn: 191864
Don't vectorize with a runtime check if it requires a
comparison between pointers with different address spaces.
The values can't be assumed to be directly comparable.
Previously it would create an illegal bitcast.
llvm-svn: 191862
disassembled output alongside the instructions.
E.g., on a vector shuffle operation with a memory operand, disassembled
outputs are:
* Without the option:
vpshufd $-0x79, (%rsp), %xmm0
* With the option:
vpshufd $-0x79, (%rsp), %xmm0 ## Latency: 5
The printed latency is extracted from the schedule model available in the
disassembler context. Thus, this option has no effect if there is not a
scheduling model for the target.
This boils down to one may need to specify the CPU string, so that this
option could have an effect.
Note: Latency < 2 are not printed.
This part of <rdar://problem/14687488>.
llvm-svn: 191859
This recursively strips all GEPs like the existing code. It also handles bitcasts and
other operations that do not change the pointer value.
llvm-svn: 191847
At this time only Unix-based systems are supported. Windows has stubs and should re-route to the simulated mode.
Thanks to Sriram Murali for contributions to this patch.
llvm-svn: 191843
Switch instructions were crashing the StructurizeCFG pass, and it's
probably easier anyway if we don't need to handle them in this pass.
Reviewed-by: Christian König <christian.koenig@amd.com>
llvm-svn: 191841
infrastructure.
This was essentially work toward PGO based on a design that had several
flaws, partially dating from a time when LLVM had a different
architecture, and with an effort to modernize it abandoned without being
completed. Since then, it has bitrotted for several years further. The
result is nearly unusable, and isn't helping any of the modern PGO
efforts. Instead, it is getting in the way, adding confusion about PGO
in LLVM and distracting everyone with maintenance on essentially dead
code. Removing it paves the way for modern efforts around PGO.
Among other effects, this removes the last of the runtime libraries from
LLVM. Those are being developed in the separate 'compiler-rt' project
now, with somewhat different licensing specifically more approriate for
runtimes.
llvm-svn: 191835
line just to add or remove a single element. What I wouldn't give to
have clang-format here an be able to format this more densely without
caring...
Re-group and sort the entries while here to make the whole thing more
clear.
llvm-svn: 191828