error: field 'CCMgr' will be initialized after field 'IndirectStubsMgr' [-Werror,-Wreorder]
: DL(TM.createDataLayout()), CCMgr(std::move(CCMgr)),
llvm-svn: 258354
they're needed.
Prior to this patch objects were loaded (via RuntimeDyld::loadObject) when they
were added to the ObjectLinkingLayer, but were not relocated and finalized until
a symbol address was requested. In the interim, another object could be loaded
and finalized with the same memory manager, causing relocation/finalization of
the first object to fail (as the first finalization call may have marked the
allocated memory for the first object read-only).
By deferring the loadObject call (and subsequent memory allocations) until an
object file is needed we can avoid prematurely finalizing memory.
llvm-svn: 258185
The cases of this switch are all perfectly regular (except for the first case).
A macro is more readable here.
Thanks to Dave Blaikie for the suggestion.
llvm-svn: 257951
Summary: Since you cannot call finalizeObject manually through the C-API and other functions from the C-API automatically call it, LLVMRunStaticConstructors should also call it or otherwise you cannot call it without first calling a workaround function (or call any other function from the C-API which implicitly finalizes the object).
Reviewers: dnovillo, spatel, bkramer, deadalnix, joker.eph, echristo, lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16188
llvm-svn: 257849
classes.
OrcRemoteTargetClient::RCMemoryManager will now register EH frames with the
server automatically. This allows remote-execution of code that uses exceptions.
llvm-svn: 257816
The new ORC remote-JITing support provides a superset of the old code's
functionality, so we can replace the old stuff. As a bonus, a couple of
previously XFAILed tests have started passing.
llvm-svn: 257343
This patch adds utilities to ORC for managing a remote JIT target. It consists
of:
1. A very primitive RPC system for making calls over a byte-stream. See
RPCChannel.h, RPCUtils.h.
2. An RPC API defined in the above system for managing memory, looking up
symbols, creating stubs, etc. on a remote target. See OrcRemoteTargetRPCAPI.h.
3. An interface for creating high-level JIT components (memory managers,
callback managers, stub managers, etc.) that operate over the RPC API. See
OrcRemoteTargetClient.h.
4. A helper class for building servers that can handle the RPC calls. See
OrcRemoteTargetServer.h.
The system is designed to work neatly with the existing ORC components and
functionality. In particular, the ORC callback API (and consequently the
CompileOnDemandLayer) is supported, enabling lazy compilation of remote code.
Assuming this doesn't trigger any builder failures, a follow-up patch will be
committed which tests these utilities by using them to replace LLI's existing
remote-JITing demo code.
llvm-svn: 257305
This is a more generic version of the MCJITMemoryManager::notifyObjectLoaded
method: It provides only a RuntimeDyld reference (rather than an
ExecutionEngine), and so can be used with ORC JIT stacks.
llvm-svn: 257296
RuntimeDyld::MemoryManager.
The RuntimeDyld::MemoryManager::reserveAllocationSpace method is called when
object files are loaded, and gives clients a chance to pre-allocate memory for
all segments. Previously only the size of each segment (code, ro-data, rw-data)
was supplied but not the alignment. This hasn't caused any problems so far, as
most clients allocate via the MemoryBlock interface which returns page-aligned
blocks. Adding alignment arguments enables finer grained allocation while still
satisfying alignment restrictions.
llvm-svn: 257294
In r255760, I optimized the SectionMemoryManager to make better use
of virtual memory on platforms where the allocation granularity was
bigger than the protection granularity. As part of this, fixing up
the free list became more complicated and was moved into
`applyMemoryGroupPermissions`. Unfortunately, I forgot to actually
remove the call that drops the free list for RO memory (I did
remove the corresponding one for RX memory), defeating the whole
optimization.
llvm-svn: 257293
managers.
Prior to this patch, recursive finalization (where finalization of one
RuntimeDyld instance triggers finalization of another instance on which the
first depends) could trigger memory access failures: When the inner (dependent)
RuntimeDyld instance and its memory manager are finalized, memory allocated
(but not yet relocated) by the outer instance is locked, and relocation in the
outer instance fails with a memory access error.
This patch adds a latch to the RuntimeDyld::MemoryManager base class that is
checked by a new method: RuntimeDyld::finalizeWithMemoryManagerLocking, ensuring
that shared memory managers are only finalized by the outermost RuntimeDyld
instance.
This allows ORC clients to supply the same memory manager to multiple calls to
addModuleSet. In particular it enables the use of user-supplied memory managers
with the CompileOnDemandLayer which must reuse the supplied memory manager for
each function that is lazily compiled.
llvm-svn: 257263
This inlines materializeAll into the only caller
(materializeAllPermanently) and renames materializeAllPermanently to
just materializeAll.
llvm-svn: 256024
Summary: On Windows, the allocation granularity can be significantly
larger than a page (64K), so with many small objects, just clearing
the FreeMem list rapidly leaks quite a bit of virtual memory space
(if not rss). Fix that by only removing those parts of the FreeMem
blocks that overlap pages for which we are applying memory permissions,
rather than dropping the FreeMem blocks entirely.
Reviewers: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15202
llvm-svn: 255760
This class is turning into a useful interface, rather than an implementation
detail, so I'm dropping the 'Base' suffix.
No functional change.
llvm-svn: 254693
DenseMap is most applicable when both keys and values are small.
In this case, the value violates that assumption, causing quite
significant memory overhead. A std::unordered_map is more appropriate
in this case (or at least fixed the memory problems I was seeing).
Differential Revision: http://reviews.llvm.org/D14910
llvm-svn: 254651
r253918 had refactored expressions like "A - B.Address + C" to "A -
B.getAddressWithOffset(C)". This is incorrect, since the latter really
computes "A - B.Address - C".
None of the tests I can run locally on x86 broke due to this bug, but it
is the current suspect for breakage on the AArch64 buildbots.
llvm-svn: 254017
Summary:
For relocation types that are known to not require stub functions, there
is no need to allocate extra space for the stub functions.
Reviewers: lhames, reames, maksfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14676
llvm-svn: 253920
Summary:
Change SectionEntry to keep track of the size of its underlying
allocation, and use that to bounds check advanceStubOffset.
Reviewers: lhames, andrew.w.kaylor, reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14675
llvm-svn: 253919
Summary:
Remove naked access to the data members in `SectionEntry` and route
accesses through accessor functions. This makes it obvious how the
instances of the class are used, and will also facilitate adding bounds
checking to `advanceStubOffset` in a later change.
Reviewers: lhames, loladiro, andrew.w.kaylor
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14674
llvm-svn: 253918
When resolving R_PPC64_REL24, code used to check for an address delta
that fits in 24 bits, while the instructions that take this relocation
actually can process address deltas that fit into *26* bits (as those
instructions have a 24 bit field, but implicitly append two zero bits
at the end since all instruction addresses are a multiple of 4).
This means that code would signal overflow once a single object's text
section exceeds 8 MB, while we can actually support up to 32 MB.
Partially fixes PR25540.
llvm-svn: 253369
The needed lld matching changes to be submitted immediately next,
but this revision will cause lld failures with this alone which is expected.
This removes the eating of the error in Archive::Child::getSize() when the characters
in the size field in the archive header for the member is not a number. To do this we
have all of the needed methods return ErrorOr to push them up until we get out of lib.
Then the tools and can handle the error in whatever way is appropriate for that tool.
So the solution is to plumb all the ErrorOr stuff through everything that touches archives.
This include its iterators as one can create an Archive object but the first or any other
Child object may fail to be created due to a bad size field in its header.
Thanks to Lang Hames on the changes making child_iterator contain an
ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add
operator overloading for * and -> .
We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash”
and using report_fatal_error() to move the error checking will cause the program to
stop, neither of which are really correct in library code. There are still some uses of
these that should be cleaned up in this library code for other than the size field.
The test cases use archives with text files so one can see the non-digit character,
in this case a ‘%’, in the size field.
These changes will require corresponding changes to the lld project. That will be
committed immediately after this change. But this revision will cause lld failures
with this alone which is expected.
llvm-svn: 252192
Bypassing LLVM for this has a number of benefits:
1) Laziness support becomes asm-syntax agnostic (previously lazy jitting didn't
work on Windows as the resolver block was in Darwin asm).
2) For cross-process JITs, it allows resolver blocks and trampolines to be
emitted directly in the target process, reducing cross process traffic.
3) It should be marginally faster.
llvm-svn: 251933
This adds support for COFF I386. This is sufficient for code execution in a
32-bit JIT, though, imported symbols need to custom lowered for the redirection.
llvm-svn: 251761
Summary: ELF's STT_File symbols may overlap with regular globals in
other files, so we should ignore them here in order to avoid having
bogus entries in the symbol table that confuse us when resolving relocations.
Reviewers: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13888
llvm-svn: 250942
in the size field in the archive header for the member is not a number. To do this we
have all of the needed methods return ErrorOr to push them up until we get out of lib.
Then the tools and can handle the error in whatever way is appropriate for that tool.
So the solution is to plumb all the ErrorOr stuff through everything that touches archives.
This include its iterators as one can create an Archive object but the first or any other
Child object may fail to be created due to a bad size field in its header.
Thanks to Lang Hames on the changes making child_iterator contain an
ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add
operator overloading for * and -> .
We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash”
and using report_fatal_error() to move the error checking will cause the program to
stop, neither of which are really correct in library code. There are still some uses of
these that should be cleaned up in this library code for other than the size field.
Also corrected the code where the size gets us to the “at the end of the archive”
which is OK but past the end of the archive will return object_error::parse_failed now.
The test cases use archives with text files so one can see the non-digit character,
in this case a ‘%’, in the size field.
llvm-svn: 250906
memory, rather than representing the stubs in IR. Update the CompileOnDemand
layer to use this functionality.
Directly emitting stubs is much cheaper than building them in IR and codegen'ing
them (see below). It also plays well with remote JITing - stubs can be emitted
directly in the target process, rather than having to send them over the wire.
The downsides are:
(1) Care must be taken when resolving symbols, as stub symbols are held in a
separate symbol table. This is only a problem for layer writers and other
people using this API directly. The CompileOnDemand layer hides this detail.
(2) Aliases of function stubs can't be symbolic any more (since there's no
symbol definition in IR), but must be converted into a constant pointer
expression. This means that modules containing aliases of stubs cannot be
cached. In practice this is unlikely to be a problem: There's no benefit to
caching such a module anyway.
On balance I think the extra performance is more than worth the trade-offs: In a
simple stress test with 10000 dummy functions requiring stubs and a single
executed "hello world" main function, directly emitting stubs reduced user time
for JITing / executing by over 90% (1.5s for IR stubs vs 0.1s for direct
emission).
llvm-svn: 250712
(e.g. bss sections).
MachO and ELF have been silently letting this pass, but COFFObjectFile contains
an assertion to catch this kind of (ab)use of the getSectionContents, and this
was causing the JIT to crash on COFF objects with BSS sections. This patch
should fix that.
llvm-svn: 250371
Summary:
Rather than just iterating over all sections and checking whether we have relocations for them, iterate over the relocation map instead. This showed up heavily in an artificial julia benchmark that does lots of compilation. On that particular benchmark, this patch gives
~15% performance improvements. As far as I can tell the primary reason why the original
loop was so expensive is that Relocations[i] actually constructs a relocationList (allocating memory & doing lots of other unnecessary computing) if none is found.
Reviewers: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13545
llvm-svn: 249942
This allows modules containing aliases to be lazily jit'd. Previously these
failed with missing symbol errors because the aliases weren't cloned from the
original module.
llvm-svn: 249481
Summary:
Without this patch, the memory manager would call `mprotect` on every memory
region it ever allocated whenever it wanted to finalize memory (i.e. not just
the ones it just allocated). This caused terrible performance problems for
long running memory managers. In one particular compile heavy julia benchmark,
we were spending 50% of time in `mprotect` if running under MCJIT.
Fix this by splitting allocated memory blocks into those on which memory
permissions have been set and those on which they haven't and only running
`mprotect` on the latter.
Reviewers: lhames
Subscribers: reames, llvm-commits
Differential Revision: http://reviews.llvm.org/D13156
llvm-svn: 248981
Because mod is always exact, this function should have never taken a rounding mode argument. The actual implementation still has issues, which I'll look at resolving in a subsequent patch.
llvm-svn: 248195
before any relocations have been applied, and again after all relocations have
been applied.
Previously each section was dumped before and after relocations targetting it
were applied, but this only shows the impact of relocations that point to other
symbols in the same section.
llvm-svn: 247335
Except the changes that defined virtual destructors as =default, because that
ran into problems with GCC 4.7 and overriding methods that weren't noexcept.
llvm-svn: 247298
This patch adds a test for MIPS64R6 relocations, it corrects check
expressions for R_MIPS_26 and R_MIPS_PC16 relocations in MIPS64R2 test, and
it adds run for big endian in MIPS64R2 test.
Patch by Vladimir Radosavljevic.
Differential Revision: http://reviews.llvm.org/D11217
llvm-svn: 246311
Code-section alignment should be at least as high as the minimum
stub alignment. If the section alignment is lower it can cause
padding to be emitted resulting in alignment errors if the section
is mapped to a higher alignment on the target.
E.g. If a text section with a 4-byte alignment gets 4-bytes of
padding to guarantee 8-byte alignment for stubs but is re-mapped to
an 8-byte alignment on the target, the 4-bytes of padding will push
the stubs to 4-byte alignment causing a crash.
No test case: There is currently no way to control host section
alignment in llvm-rtdyld. This could be made testable by adding
a custom memory manager. I'll look at that in a follow-up patch.
llvm-svn: 245031
After r244870 flush() will only compare two null pointers and return,
doing nothing but wasting run time. The call is not required any more
as the stream and its SmallString are always in sync.
Thanks to David Blaikie for reviewing.
llvm-svn: 244928
Previously, for O32 ABI we did not calculate correct addend for R_MIPS_HI16
and R_MIPS_PCHI16 relocations. This patch fixes that.
Patch by Vladimir Radosavljevic.
Differential Revision: http://reviews.llvm.org/D11186
llvm-svn: 244897
LoadedObjectInfo was depending on the implicit copy ctor in the presence
of a user-declared dtor. Default (and protect) it in the base class and
make the devired classes final to avoid any risk of a public API that
would enable slicing.
llvm-svn: 244112
Various value handles needed to be copy constructible and copy
assignable (mostly for their use in DenseMap). But to avoid an API that
might allow accidental slicing, make these members protected in the base
class and make derived classes final (the special members become
implicitly public there - but disallowing further derived classes that
might be sliced to the intermediate type).
Might be worth having a warning a bit like -Wnon-virtual-dtor that
catches public move/copy assign/ctors in classes with virtual functions.
(suppressable in the same way - by making them protected in the base,
and making the derived classes final) Could be fancier and only diagnose
them when they're actually called, potentially.
Also allow a few default implementations where custom implementations
(especially with non-standard return types) were implemented.
llvm-svn: 243909
There is an ODR conflict between lib/ExecutionEngine/ExecutionEngineBindings.cpp
and lib/Target/TargetMachineC.cpp. The inline definitions should simply
be marked static (thanks dblaikie for the hint).
llvm-svn: 243298
Summary:
Replace getDataLayout() with a createDataLayout() method to make
explicit that it is intended to create a DataLayout only and not
accessing it for other purpose.
This change is the last of a series of commits dedicated to have a
single DataLayout during compilation by using always the one owned
by the module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11103
(cherry picked from commit 5609fc56bca971e5a7efeaa6ca4676638eaec5ea)
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243114
This reverts commit 0f720d984f419c747709462f7476dff962c0bc41.
It breaks clang too badly, I need to prepare a proper patch for clang
first.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243089
Summary:
Replace getDataLayout() with a createDataLayout() method to make
explicit that it is intended to create a DataLayout only and not
accessing it for other purpose.
This change is the last of a series of commits dedicated to have a
single DataLayout during compilation by using always the one owned
by the module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11103
(cherry picked from commit 5609fc56bca971e5a7efeaa6ca4676638eaec5ea)
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243083
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
The ExecutionEngine will act as an exception and will be unsafe to
be reused across context. We don't enforce this rule but undefined
behavior can occurs if the user tries to do it.
Reviewers: lhames
Subscribers: echristo, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11110
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 242414
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
The ExecutionEngine will act as an exception and will be unsafe to
be reused across context. We don't enforce this rule but undefined
behavior can occurs if the user tries to do it.
Reviewers: lhames
Subscribers: echristo, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11110
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 242387
Originally added in r139314.
Back then it didn't actually get the address, it got whatever value the
relocation used: address or offset.
The values in different object formats are:
* MachO: Always an offset.
* COFF: Always an address, but when talking about the virtual address of
sections it says: "for simplicity, compilers should set this to zero".
* ELF: An offset for .o files and and address for .so files. In the case of the
.so, the relocation in not linked to any section (sh_info is 0). We can't
really compute an offset.
Some API mappings would be:
* Use getAddress for everything. It would be quite cumbersome. To compute the
address elf has to follow sh_info, which can be corrupted and therefore the
method has to return an ErrorOr. The address of the section is also the same
for every relocation in a section, so we shouldn't have to check the error
and fetch the value for every relocation.
* Use a getValue and make it up to the user to know what it is getting.
* Use a getOffset and:
* Assert for dynamic ELF objects. That is a very peculiar case and it is
probably fair to ask any tool that wants to support it to use ELF.h. The
only tool we have that reads those (llvm-readobj) already does that. The
only other use case I can think of is a dynamic linker.
* Check that COFF .obj files have sections with zero virtual address spaces. If
it turns out that some assembler/compiler produces these, we can change
COFFObjectFile::getRelocationOffset to subtract it. Given COFF format,
this can be done without the need for ErrorOr.
The getRelocationAddress method was never implemented for COFF. It also
had exactly one use in a very peculiar case: a shortcut for adding the
section value to a pcrel reloc on MachO.
Given that, I don't expect that there is any use out there of the C API. If
that is not the case, let me know and I will add it back with the implementation
inlined and do a proper deprecation.
llvm-svn: 241450
Add support for resolving MIPS32r6 relocations in MCJIT.
Patch by Vladimir Radosavljevic.
Differential Revision: http://reviews.llvm.org/D10687
llvm-svn: 241442
Requested by Eugene Rozenfeld of the LLILC team, this feature allows JIT
clients to skip relocations for selected external symbols by returning ~0ULL
from their symbol resolver. If this value is returned for a given symbol,
RuntimeDyld will skip all relocations for that symbol. The client will be
responsible for applying the skipped relocations manually before the code
is executed.
llvm-svn: 241383
This function can really fail since the string table offset can be out of
bounds.
Using ErrorOr makes sure the error is checked.
Hopefully a lot of the boilerplate code in tools/* can go away once we have
a diagnostic manager in Object.
llvm-svn: 241297
Realistically, this will be returning ErrorOr for some time as refactoring the
user code to check once per section will take some time.
Given that, use it for checking if a relocation has addend or not.
While at it, add ELFRelocationRef to simplify the users.
llvm-svn: 241028
This is still a really odd function. Most calls are in object format specific
contexts and should probably be replaced with a more direct query, but at least
now this is not too obnoxious to use.
llvm-svn: 240777
COFF and MachO only define symbol sizes for common symbols. Reflect that
in the class hierarchy by having a method for common symbols only in the base
and a general one in ELF.
This avoids the need of using a magic value for the size, which had a few
problems
* Most callers didn't check for it.
* The ones that did could not tell the magic value from a file actually having
that value.
llvm-svn: 240529
So far, LLVM has not emitted correct addend for N64 and N32 ABI. This patch
fixes that. It also removes fixup from MCJIT for R_MIPS_PC16 relocation.
Patch by Vladimir Radosavljevic.
Differential Revision: http://reviews.llvm.org/D10565
llvm-svn: 240404
Summary:
This is an implementation of RuntimeDyld::SymbolResolver that simply
rejects all resolution requests; useful for clients that do not have any
cross-object symbol references.
Reviewers: lhames
Reviewed By: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10455
llvm-svn: 240288
Summary: This adds FindGlobalVariableNamed to ExecutionEngine
(plus implementation in MCJIT), which is an analog of
FindFunctionNamed for GlobalVariables.
Reviewers: lhames
Reviewed By: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10421
llvm-svn: 240202
This patch changes getRelocationAddend to use ErrorOr and considers it an error
to try to get the addend of a REL section.
If, for example, a x86_64 file has a REL section, that file is corrupted and
we should reject it.
Using ErrorOr is not ideal since we check the section type once per relocation
instead of once per section.
Checking once per section would involve getRelocationAddend just asserting and
callers checking the section before iterating over the relocations.
In any case, this is an improvement and includes a test.
llvm-svn: 240176
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
`LLVM_ENABLE_MODULES` builds sometimes fail because `Intrinsics.td`
needs to regenerate `Instrinsics.h` before anyone can include anything
from the LLVM_IR module. Represent the dependency explicitly to prevent
that.
llvm-svn: 239796
into partitions. Also, add an option to clone stub definitions (not just decls)
into partitions: these definitions could be inlined in some places to avoid the
overhead of calling via the stub.
Found by inspection - no test case yet, although I plan to add a unit test for
this once the CompileOnDemand layer refactoring settles down.
llvm-svn: 239640
fix segfault by checking for UnknownArch, since
getArchTypePrefix() will return nullptr for UnknownArch.
This fixes regression caused by r238424.
llvm-svn: 239456
make_error_code(object_error) is slow because object::object_category()
uses a ManagedStatic variable. But the real problem is that the function is
called too frequently. This patch uses std::error_code() instead of
object_error::success. In most cases, we return "success", so this patch
reduces number of function calls to that function.
http://reviews.llvm.org/D10333
llvm-svn: 239409
This patch adds R_MIPS_PC32 relocation for Mips64.
Patch by Vladimir Radosavljevic.
Differential Revision: http://reviews.llvm.org/D10235
llvm-svn: 239301
The windows buildbot originally failed because the check expressions are
evaluated as 64-bit values, even for 32-bit symbols. Fixed this by comparing
bottom 32-bits of the expressions.
The host/target endian mismatch issue is that it's invalid to read/write target
values using a host pointer without taking care of endian differences between
the target and host. Most (if not all) instances of
reinterpret_cast<uint32_t*>() in the RuntimeDyld are examples of this bug.
This has been fixed for Mips using the endian aware read/write functions.
The original commits were:
r238838:
[mips] Add RuntimeDyld tests for currently supported O32 relocations.
Reviewers: petarj, vkalintiris
Reviewed By: vkalintiris
Subscribers: vkalintiris, llvm-commits
Differential Revision: http://reviews.llvm.org/D10126
r238844:
[mips][mcjit] Add support for R_MIPS_PC32.
Summary:
This allows us to resolve relocations for DW_EH_PE_pcrel TType encodings
in the exception handling LSDA.
Also fixed a nearby typo.
Reviewers: petarj, vkalintiris
Reviewed By: vkalintiris
Subscribers: vkalintiris, llvm-commits
Differential Revision: http://reviews.llvm.org/D10127
llvm-svn: 238915
Summary:
This allows us to resolve relocations for DW_EH_PE_pcrel TType encodings
in the exception handling LSDA.
Also fixed a nearby typo.
Reviewers: petarj, vkalintiris
Reviewed By: vkalintiris
Subscribers: vkalintiris, llvm-commits
Differential Revision: http://reviews.llvm.org/D10127
llvm-svn: 238844
If the type isn't trivially moveable emplace can skip a potentially
expensive move. It also saves a couple of characters.
Call sites were found with the ASTMatcher + some semi-automated cleanup.
memberCallExpr(
argumentCountIs(1), callee(methodDecl(hasName("push_back"))),
on(hasType(recordDecl(has(namedDecl(hasName("emplace_back")))))),
hasArgument(0, bindTemporaryExpr(
hasType(recordDecl(hasNonTrivialDestructor())),
has(constructExpr()))),
unless(isInTemplateInstantiation()))
No functional change intended.
llvm-svn: 238602
Add support for resolving MIPS64r2 and MIPS64r6 relocations in MCJIT.
Patch by Vladimir Radosavljevic.
Differential Revision: http://reviews.llvm.org/D9667
llvm-svn: 238424
remove ExecutionEngine's dependence on CodeGen. NFC.
This is a follow-up to r238080.
Differential Revision: http://reviews.llvm.org/D9830
llvm-svn: 238244
This is part of the work to remove TargetMachine::resetTargetOptions.
In this patch, instead of updating global variable NoFramePointerElim in
resetTargetOptions, its use in DisableFramePointerElim is replaced with a call
to TargetFrameLowering::noFramePointerElim. This function determines on a
per-function basis if frame pointer elimination should be disabled.
There is no change in functionality except that cl:opt option "disable-fp-elim"
can now override function attribute "no-frame-pointer-elim".
llvm-svn: 238080
Summary:
This supersedes http://reviews.llvm.org/D4010, hopefully properly
dealing with the JIT case and also adds an actual test case.
DwarfContext was basically already usable for the JIT (and back when
we were overwriting ELF files it actually worked out of the box by
accident), but in order to resolve relocations correctly it needs
to know the load address of the section.
Rather than trying to get this out of the ObjectFile or requiring
the user to create a new ObjectFile just to get some debug info,
this adds the capability to pass in that info directly.
As part of this I separated out part of the LoadedObjectInfo struct
from RuntimeDyld, since it is now required at a higher layer.
Reviewers: lhames, echristo
Reviewed By: echristo
Subscribers: vtjnash, friss, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D6961
llvm-svn: 237961
isInt is a little easier to read, let's use that more consistently.
Incidentally, this also silences a warning for shifting a negative
number.
This fixes PR23532.
llvm-svn: 237476
The TargetRegistry is just a namespace-like class, instantiated in one
place to use a range-based for loop. Instead, expose access to the
registry via a range-based 'targets()' function instead. This makes most
uses a bit awkward/more verbose - but eventually we should just add a
range-based find_if function which will streamline these functions. I'm
happy to mkae them a bit awkward in the interim as encouragement to
improve the algorithms in time.
llvm-svn: 237059
and avoid cloning unused decls into every partition.
Module partitioning showed up as a source of significant overhead when I
profiled some trivial test cases. Avoiding the overhead of partitionging
for uncalled functions helps to mitigate this.
This change also means that it is no longer necessary to have a
LazyEmittingLayer underneath the CompileOnDemand layer, since the
CompileOnDemandLayer will not extract or emit function bodies until they are
called.
llvm-svn: 236465
This reapplies r235060 and 235070, which were reverted because of test failures
in LLDB. The failure was caused because at moment RuntimeDyld is processing
relocations for all sections, irrespective of whether we actually load them
into memory or not, but RuntimeDyld was not actually remembering where in memory
the unrelocated section is. This commit includes a fix for that issue by
remembering that pointer, though the longer term fix should be to stop processing
unneeded sections.
Original Summary:
This allows us to get rid of the original unrelocated object file after
we're done processing relocations (but before applying them).
MachO and COFF already do not require this (currently we have temporary hacks
to prevent ownership from being released, but those are brittle and should be
removed soon).
The placeholder mechanism allowed the relocation resolver to look at original
object file to obtain more information that are required to apply the
relocations. This is usually necessary in two cases:
- For relocations targetting sub-word memory locations, there may be pieces
of the instruction at the target address which we should not override.
- Some relocations on some platforms allow an extra addend to be encoded in
their immediate fields.
The problem is that in the second case the information cannot be recovered
after the relocations have been applied once because they will have been
overridden. In the first case we also need to be careful to not use any bits
that aren't fixed and may have been overriden by applying a first relocation.
In the past both have been fixed by just looking at original object file. This
patch attempts to recover the information from the first by looking at the
relocated object file, while the extra addend in the second case is read
upon relocation processing and addend to the regular addend.
I have tested this on X86. Other platforms represent my best understanding
of how those relocations should work, but I may have missed something because
I do not have access to those platforms.
We will keep the ugly workarounds in place for a couple of days, so this commit
can be reverted if it breaks the bots.
Differential Revision: http://reviews.llvm.org/D9028
llvm-svn: 236341
Many of the callers already have the pointer type anyway, and for the
couple of callers that don't it's pretty easy to call PointerType::get
on the pointee type and address space.
This avoids LLParser from using PointerType::getElementType when parsing
GlobalAliases from IR.
llvm-svn: 236160
This will enable us to create a PDBContext so as to expose some
amount of debug info functionality through a common interace.
Differential Revision: http://reviews.llvm.org/D9205
Reviewed by: Alexey Samsonov
llvm-svn: 235612
the function body.
This is necessary for correctness when lazily compiling.
Also, flesh out the Orc unit test infrastructure slightly, and add a unit test
for this.
llvm-svn: 235347
Summary:
This allows us to get rid of the original unrelocated object file after
we're done processing relocations (but before applying them).
MachO and COFF already do not require this (currently we have temporary hacks
to prevent ownership from being released, but those are brittle and should be
removed soon).
The placeholder mechanism allowed the relocation resolver to look at original
object file to obtain more information that are required to apply the
relocations. This is usually necessary in two cases:
- For relocations targetting sub-word memory locations, there may be pieces
of the instruction at the target address which we should not override.
- Some relocations on some platforms allow an extra addend to be encoded in
their immediate fields.
The problem is that in the second case the information cannot be recovered
after the relocations have been applied once because they will have been
overridden. In the first case we also need to be careful to not use any bits
that aren't fixed and may have been overriden by applying a first relocation.
In the past both have been fixed by just looking at original object file. This
patch attempts to recover the information from the first by looking at the
relocated object file, while the extra addend in the second case is read
upon relocation processing and addend to the regular addend.
I have tested this on X86. Other platforms represent my best understanding
of how those relocations should work, but I may have missed something because
I do not have access to those platforms.
We will keep the ugly workarounds in place for a couple of days, so this commit
can be reverted if it breaks the bots.
Reviewers: petarj, t.p.northover, lhames
Reviewed By: lhames
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D9028
llvm-svn: 235060
Summary:
This is the first in a series of patches to eventually add support for TLS relocations to RuntimeDyld. This patch resolves an issue in the current GOT handling, where GOT entries would be reused between object files, which leads to the same situation that necessitates the GOT in the first place, i.e. that the 32-bit offset can not cover all of the address space. Thus this patch makes the GOT object-file-local.
Unfortunately, this still isn't quite enough, because the MemoryManager does not yet guarantee that sections are allocated sufficiently close to each other, even if they belong to the same object file. To address this concern, this patch also adds a small API abstraction on top of the GOT allocation mechanism that will allow (temporarily, until the MemoryManager is improved) using the stub mechanism instead of allocating a different section. The actual switch from separate section to stub mechanism will be part of a follow-on commit, so that it can be easily reverted independently at the appropriate time.
Test Plan: Includes a test case where the GOT of two object files is artificially forced to be apart by several GB.
Reviewers: lhames
Reviewed By: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8813
llvm-svn: 234839
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
llvm-svn: 234679
ensure that section addresses are distinct.
mapSectionAddress will fail if two sections are allocated the same address,
which can happen if any section has zero size (since malloc(0) is implementation
defined). Unfortunately I've been unable to repro this with a simple test case.
Fixes <rdar://problem/20314015>.
llvm-svn: 234299
use these to add support for C++ static ctors/dtors to the Orc-lazy JIT in LLI.
Replace the trivial_retval_1 regression test - the new 'hello' test is covering
strictly more code.
llvm-svn: 233885
This patch fixes MCJIT::addGlobalMapping by changing the implementation of the
ExecutionEngineState class. The new implementation maintains a bidirectional
mapping between symbol names (std::strings) and addresses (uint64_ts), rather
than a mapping between Value*s and void*s.
This has fix has been made for backwards compatibility, however the strongly
preferred way to resolve unknown symbols is by writing a custom
RuntimeDyld::SymbolResolver (formerly RTDyldMemoryManager) and overriding the
findSymbol method. The addGlobalMapping method is a hangover from the legacy JIT
(which has was removed in 3.6), and may be deprecated in a future release as
part of a clean-up of the ExecutionEngine interface.
Patch by Murat Bolat. Thanks Murat!
llvm-svn: 233747
MCJIT.
This patch decouples the two responsibilities of the RTDyldMemoryManager class,
memory management and symbol resolution, into two new classes:
RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver.
The symbol resolution interface is modified slightly, from:
uint64_t getSymbolAddress(const std::string &Name);
to:
RuntimeDyld::SymbolInfo findSymbol(const std::string &Name);
The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld
and others to reason about non-strong/non-exported symbols.
The memory management interface removes the following method:
void notifyObjectLoaded(ExecutionEngine *EE,
const object::ObjectFile &) {}
as it is not related to memory management. (Note: Backwards compatibility *is*
maintained for this method in MCJIT and OrcMCJITReplacement, see below).
The RTDyldMemoryManager class remains in-tree for backwards compatibility.
It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from
RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which
just subclasses RuntimeDyld::MemoryManager and reintroduces the
notifyObjectLoaded method for backwards compatibility).
The EngineBuilder class retains the existing method:
EngineBuilder&
setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
and includes two new methods:
EngineBuilder&
setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
EngineBuilder&
setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR);
Clients should use EITHER:
A single call to setMCJITMemoryManager with an RTDyldMemoryManager.
OR (exclusive)
One call each to each of setMemoryManager and setSymbolResolver.
This patch should be fully compatible with existing uses of RTDyldMemoryManager.
If it is not it should be considered a bug, and the patch either fixed or
reverted.
If clients find the new API to be an improvement the goal will be to deprecate
and eventually remove the RTDyldMemoryManager class in favor of the new classes.
llvm-svn: 233509
Author: Lang Hames <lhames@gmail.com>
Date: Mon Mar 9 23:51:09 2015 +0000
[Orc][MCJIT][RuntimeDyld] Add header that was accidentally left out of r231724.
Author: Lang Hames <lhames@gmail.com>
Date: Mon Mar 9 23:44:13 2015 +0000
[Orc][MCJIT][RuntimeDyld] Add symbol flags to symbols in RuntimeDyld. Thread the
new types through MCJIT and Orc.
In particular, add a 'weak' flag. When plumbed through RTDyldMemoryManager, this
will allow us to distinguish between weak and strong definitions and find the
right ones during symbol resolution.
llvm-svn: 231731
new types through MCJIT and Orc.
In particular, add a 'weak' flag. When plumbed through RTDyldMemoryManager, this
will allow us to distinguish between weak and strong definitions and find the
right ones during symbol resolution.
llvm-svn: 231724