it is completely optional, and sink the logic for handling the preserved
analysis set into it.
This allows us to implement the delegation logic desired in the proxy
module analysis for the function analysis manager where if the proxy
itself is preserved we assume the set of functions hasn't changed and we
do a fine grained invalidation by walking the functions in the module
and running the invalidate for them all at the manager level and letting
it try to invalidate any passes.
This in turn makes it blindingly obvious why we should hoist the
invalidate trait and have two collections of results. That allows
handling invalidation for almost all analyses without indirect calls and
it allows short circuiting when the preserved set is all.
llvm-svn: 195338
type and detect whether or not it provides an 'invalidate' member the
analysis manager should use.
This lets the overwhelming common case of *not* caring about custom
behavior when an analysis is invalidated be the the obvious default
behavior with no code written by the author of an analysis. Only when
they write code specifically to handle invalidation does it get used.
Both cases are actually covered by tests here. The test analysis uses
the default behavior, and the proxy module analysis actually has custom
behavior on invalidation that is firing correctly. (In fact, this is the
analysis which was the primary motivation for having custom invalidation
behavior in the first place.)
llvm-svn: 195332
This proxy will fill the role of proxying invalidation events down IR
unit layers so that when a module changes we correctly invalidate
function analyses. Currently this is a very coarse solution -- any
change blows away the entire thing -- but the next step is to make
invalidation handling more nuanced so that we can propagate specific
amounts of invalidation from one layer to the next.
The test is extended to place a module pass between two function pass
managers each of which have preserved function analyses which get
correctly invalidated by the module pass that might have changed what
functions are even in the module.
llvm-svn: 195304
MappingTrait template specializations can now have a validate() method which
performs semantic checking. For details, see <http://llvm.org/docs/YamlIO.html>.
llvm-svn: 195286
Enhance the tests to actually require moves in C++11 mode, in addition
to testing the moved-from state. Further enhance the tests to cover
copy-assignment into a moved-from object and moving a large-state
object. (Note that we can't really test small-state vs. large-state as
that isn't an observable property of the API really.) This should finish
addressing review on r195239.
llvm-svn: 195261
r195239, as well as a comment about the fact that assigning over
a moved-from object was in fact tested. Addresses some of the review
feedback on r195239.
llvm-svn: 195260
This adds a new set-like type which represents a set of preserved
analysis passes. The set is managed via the opaque PassT::ID() void*s.
The expected convenience templates for interacting with specific passes
are provided. It also supports a symbolic "all" state which is
represented by an invalid pointer in the set. This state is nicely
saturating as it comes up often. Finally, it supports intersection which
is used when finding the set of preserved passes after N different
transforms.
The pass API is then changed to return the preserved set rather than
a bool. This is much more self-documenting than the previous system.
Returning "none" is a conservatively correct solution just like
returning "true" from todays passes and not marking any passes as
preserved. Passes can also be dynamically preserved or not throughout
the run of the pass, and whatever gets returned is the binding state.
Finally, preserving "all" the passes is allowed for no-op transforms
that simply can't harm such things.
Finally, the analysis managers are changed to instead of blindly
invalidating all of the analyses, invalidate those which were not
preserved. This should rig up all of the basic preservation
functionality. This also correctly combines the preservation moving up
from one IR-layer to the another and the preservation aggregation across
N pass runs. Still to go is incrementally correct invalidation and
preservation across IR layers incrementally during N pass runs. That
will wait until we have a device for even exposing analyses across IR
layers.
While the core of this change is obvious, I'm not happy with the current
testing, so will improve it to cover at least some of the invalidation
that I can test easily in a subsequent commit.
llvm-svn: 195241
Somehow, this ADT got missed which is moderately terrifying considering
the efficiency of move for it.
The code to implement move semantics for it is pretty horrible
currently but was written to reasonably closely match the rest of the
code. Unittests that cover both copying and moving (at a basic level)
added.
llvm-svn: 195239
The FunctionPassManager is now itself a function pass. When run over
a function, it runs all N of its passes over that function. This is the
1:N mapping in the pass dimension only. This allows it to be used in
either a ModulePassManager or potentially some other manager that
works on IR units which are supersets of Functions.
This commit also adds the obvious adaptor to map from a module pass to
a function pass, running the function pass across every function in the
module.
The test has been updated to use this new pattern.
llvm-svn: 195192
a module-specific interface. This is the first of many steps necessary
to generalize the infrastructure such that we can support both
a Module-to-Function and Module-to-SCC-to-Function pass manager
nestings.
After a *lot* of attempts that never worked and didn't even make it to
a committable state, it became clear that I had gotten the layering
design of analyses flat out wrong. Four days later, I think I have most
of the plan for how to correct this, and I'm starting to reshape the
code into it. This is just a baby step I'm afraid, but starts separating
the fundamentally distinct concepts of function analysis passes and
module analysis passes so that in subsequent steps we can effectively
layer them, and have a consistent design for the eventual SCC layer.
As part of this, I've started some interface changes to make passes more
regular. The module pass accepts the module in the run method, and some
of the constructor parameters are gone. I'm still working out exactly
where constructor parameters vs. method parameters will be used, so
I expect this to fluctuate a bit.
This actually makes the invalidation less "correct" at this phase,
because now function passes don't invalidate module analysis passes, but
that was actually somewhat of a misfeature. It will return in a better
factored form which can scale to other units of IR. The documentation
has gotten less verbose and helpful.
llvm-svn: 195189
This patch places class definitions in implementation files into anonymous
namespaces to prevent weak vtables. This eliminates the need of providing an
out-of-line definition to pin the vtable explicitly to the file.
llvm-svn: 195092
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file. The memory leaks in this version have been fixed. Thanks
Alexey for pointing them out.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 195064
This change is incorrect. If you delete virtual destructor of both a base class
and a subclass, then the following code:
Base *foo = new Child();
delete foo;
will not cause the destructor for members of Child class. As a result, I observe
plently of memory leaks. Notable examples I investigated are:
ObjectBuffer and ObjectBufferStream, AttributeImpl and StringSAttributeImpl.
llvm-svn: 194997
This change is the first in a series of changes improving LLVM's Block
Frequency propogation implementation to not lose probability mass in
branchy code when propogating block frequency information from a basic
block to its successors. This patch is a simple infrastructure
improvement that does not actually modify the block frequency
algorithm. The specific changes are:
1. Changes the division algorithm used when scaling block frequencies by
branch probabilities to a short division algorithm. This gives us the
remainder for free as well as provides a nice speed boost. When I
benched the old routine and the new routine on a Sandy Bridge iMac with
disabled turbo mode performing 8192 iterations on an array of length
32768, I saw ~600% increase in speed in mean/median performance.
2. Exposes a scale method that returns a remainder. This is important so
we can ensure that when we scale a block frequency by some branch
probability BP = N/D, the remainder from the division by D can be
retrieved and propagated to other children to ensure no probability mass
is lost (more to come on this).
llvm-svn: 194950
AnalysisManager. All this method did was assert something and we have
a perfectly good way to trigger that assert from the query path.
llvm-svn: 194947
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 194865
Summary:
Some machine-type-neutral object files containing only undefined symbols
actually do exist in the Windows standard library. Need to recognize them
as COFF files.
Reviewers: Bigcheese
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2164
llvm-svn: 194734
This bug only bit the C++98 build bots because all of the actual uses
really do move. ;] But not *quite* ready to do the whole C++11 switch
yet, so clean it up. Also add a unit test that catches this immediately.
llvm-svn: 194548
more smarts in it. This is where most of the interesting logic that used
to live in the implicit-scheduling-hackery of the old pass manager will
live.
Like the previous commits, note that this is a very early prototype!
I expect substantial changes before this is ready to use.
The core of the design is the following:
- We have an AnalysisManager which can be used across a series of
passes over a module.
- The code setting up a pass pipeline registers the analyses available
with the manager.
- Individual transform passes can check than an analysis manager
provides the analyses they require in order to fail-fast.
- There is *no* implicit registration or scheduling.
- Analysis passes are different from other passes: they produce an
analysis result that is cached and made available via the analysis
manager.
- Cached results are invalidated automatically by the pass managers.
- When a transform pass requests an analysis result, either the analysis
is run to produce the result or a cached result is provided.
There are a few aspects of this design that I *know* will change in
subsequent commits:
- Currently there is no "preservation" system, that needs to be added.
- All of the analysis management should move up to the analysis library.
- The analysis management needs to support at least SCC passes. Maybe
loop passes. Living in the analysis library will facilitate this.
- Need support for analyses which are *both* module and function passes.
- Need support for pro-actively running module analyses to have cached
results within a function pass manager.
- Need a clear design for "immutable" passes.
- Need support for requesting cached results when available and not
re-running the pass even if that would be necessary.
- Need more thorough testing of all of this infrastructure.
There are other aspects that I view as open questions I'm hoping to
resolve as I iterate a bit on the infrastructure, and especially as
I start writing actual passes against this.
- Should we have separate management layers for function, module, and
SCC analyses? I think "yes", but I'm not yet ready to switch the code.
Adding SCC support will likely resolve this definitively.
- How should the 'require' functionality work? Should *that* be the only
way to request results to ensure that passes always require things?
- How should preservation work?
- Probably some other things I'm forgetting. =]
Look forward to more patches in shorter order now that this is in place.
llvm-svn: 194538
This is still just a skeleton. I'm trying to pull together the
experimentation I've done into committable chunks, and this is the first
coherent one. Others will follow in hopefully short order that move this
more toward a useful initial implementation. I still expect the design
to continue evolving in small ways as I work through the different
requirements and features needed here though.
Keep in mind, all of this is off by default.
Currently, this mostly exercises the use of a polymorphic smart pointer
and templates to hide the polymorphism for the pass manager from the
pass implementation. The next step will be more significant, adding the
first framework of analysis support.
llvm-svn: 194325
give the files a legacy prefix in the right directory. Use forwarding
headers in the old locations to paper over the name change for most
clients during the transitional period.
No functionality changed here! This is just clearing some space to
reduce renaming churn later on with a new system.
Even when the new stuff starts to go in, it is going to be hidden behind
a flag and off-by-default as it is still WIP and under development.
This patch is specifically designed so that very little out-of-tree code
has to change. I'm going to work as hard as I can to keep that the case.
Only direct forward declarations of the PassManager class are impacted
by this change.
llvm-svn: 194324
r-value references. I still want to test that when we have them,
llvm_move is actually a move.
Have I mentioned that I really want to move to C++11? ;]
llvm-svn: 194318
Clang managed to never instantiate the copy constructor. Added tests to
ensure this path is tested.
We could still use tests for the polymorphic nature. Those coming up
next.
llvm-svn: 194317
unique ownership smart pointer which is *deep* copyable by assuming it
can call a T::clone() method to allocate a copy of the owned data.
This is mostly useful with containers or other collections of uniquely
owned data in C++98 where they *might* copy. With C++11 we can likely
remove this in favor of move-only types and containers wrapped around
those types.
llvm-svn: 194315
The BlockAddress doesn't have access to the correct basic blocks until the
functions have been cloned. This causes the BlockAddress to point to the old
values. Just wait until the functions have been cloned before copying the
initializers.
PR13163
llvm-svn: 194218
ErrorOr had quiet a bit of complexity and indirection to be able to hold a user
type with the error.
That feature is not used anymore. This patch removes it, it will live in svn
history if we ever need it again.
If we do need it again, IMHO there is one thing that should be done
differently: Holding extra info in the error is not a property a function also
returning a value or not. The ability to hold extra info should be in the error
type and ErrorOr templated over it so that we don't need the funny looking
ErrorOr<void>.
llvm-svn: 194030
The function verifyFunction() in lib/IR/Verifier.cpp misses some
calls. It creates a temporary FunctionPassManager that will run a
single Verifier pass. Unfortunately, FunctionPassManager is no
PassManager and does not call doInitialization() and doFinalization()
by itself. Verifier does important tasks in doInitialization() such as
collecting type information used to check DebugInfo metadata and
doFinalization() does some additional checks. Therefore these checks
were missed and debug info couldn't be verified at all, it just
crashed if the function had some.
verifyFunction() is currently not used in llvm unless -debug option is
enabled, and in unittests/IR/VerifierTest.cpp
VerifierTest had to be changed to create the function in a module from
which the type debug info can be collected.
Patch by Michael Kruse.
llvm-svn: 193719
startswith_lower is ocassionally useful and I think worth adding.
endwith_lower is added for completeness.
Differential Revision: http://llvm-reviews.chandlerc.com/D2041
llvm-svn: 193706
Summary:
Use DWARF4 table of form classes to fetch attributes from DIE
in a more consistent way. This shouldn't change the functionality and
serves as a refactoring for upcoming change: DW_AT_high_pc has different
semantics depending on its form class.
Reviewers: dblaikie, echristo
Reviewed By: echristo
CC: echristo, llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1961
llvm-svn: 193553
Includes a test case/FIXME demonstrating a bug/limitation in pointer to
member hashing. To be honest I'm not sure why we don't just always use
summary hashing for referenced types... but perhaps I'm missing
something.
llvm-svn: 193175
This uses a map, keeping the type DIE numbering separate from the DIEs
themselves - alternatively we could do things the way GCC does if we
want to add an integer to the DIE type to record the numbering there.
llvm-svn: 193105
GTest assumes the left hand side of the assert is the expectation and
the right hand side is the test result. It's easier to read gtest
failures when these things are ordered correctly.
llvm-svn: 192854
This patch fixes a small mistake in MCDataAtom::addData() where it doesn't ever
call remap():
- if (Data.size() > Begin - End - 1)
+ if (Data.size() > End + 1 - Begin)
remap(Begin, End + 1);
This is currently not visible because of another bug is the disassembler, so
the patch includes a unit test.
Patch by Stephen Checkoway.
llvm-svn: 192823
Before this patch we would assert when building llvm as multiple shared
libraries (cmake's BUILD_SHARED_LIBS). The problem was the line
if (T.AsmStreamerCtorFn == Target::createDefaultAsmStreamer)
which returns false because of -fvisibility-inlines-hidden. It is easy
to fix just this one case, but I decided to try to also make the
registration more strict. It looks like the old logic for ignoring
followup registration was just a temporary hack that outlived its
usefulness.
This patch converts the ifs to asserts, fixes the few cases that were
registering twice and makes sure all the asserts compare with null.
Thanks for Joerg for reporting the problem and reviewing the patch.
llvm-svn: 192803
It's useful for the memory managers that are allocating a section to know what the name of the section is.
At a minimum, this is useful for low-level debugging - it's customary for JITs to be able to tell you what
memory they allocated, and as part of any such dump, they should be able to tell you some meta-data about
what each allocation is for. This allows clients that supply their own memory managers to do this.
Additionally, we also envision the SectionName being useful for passing meta-data from within LLVM to an LLVM
client.
This changes both the C and C++ APIs, and all of the clients of those APIs within LLVM. I'm assuming that
it's safe to change the C++ API because that API is allowed to change. I'm assuming that it's safe to change
the C API because we haven't shipped the API in a release yet (LLVM 3.3 doesn't include the MCJIT memory
management C API).
llvm-svn: 191804
- New ProcessInfo class to encapsulate information about child processes.
- Generalized the Wait() to support non-blocking wait on child processes.
- ExecuteNoWait() now returns a ProcessInfo object with information about
the launched child. Users will be able to use this object to
perform non-blocking wait.
- ExecuteNoWait() now accepts an ExecutionFailed param that tells if execution
failed or not.
These changes will allow users to implement basic process parallel
tools.
Differential Revision: http://llvm-reviews.chandlerc.com/D1728
llvm-svn: 191763
Inspired by the object from the SLPVectorizer. This found a minor bug in the
debug loc restoration in the vectorizer where the location of a following
instruction was attached instead of the location from the original instruction.
llvm-svn: 191673
YAMLIO printed a string as is without quotes unless it contains a newline
character. That did not suffice. We also need to quote a string if it starts
with a backquote, quote, double quote or atsign, or it's the empty string.
llvm-svn: 190469
On Windows, character encoding of multibyte environment variable varies
depending on settings. The only reliable way to handle it I think is to use
GetEnvironmentVariableW().
GetEnvironmentVariableW() works on wchar_t string, which is on Windows UTF16
string. That's not ideal because we use UTF-8 as the internal encoding in LLVM.
This patch defines a wrapper function which takes and returns UTF-8 string for
GetEnvironmentVariableW().
The wrapper function does not do any conversion and just forwards the argument
to getenv() on Unix.
Differential Revision: http://llvm-reviews.chandlerc.com/D1612
llvm-svn: 190423
The work on this project was left in an unfinished and inconsistent state.
Hopefully someone will eventually get a chance to implement this feature, but
in the meantime, it is better to put things back the way the were. I have
left support in the bitcode reader to handle the case-range bitcode format,
so that we do not lose bitcode compatibility with the llvm 3.3 release.
This reverts the following commits: 155464, 156374, 156377, 156613, 156704,
156757, 156804 156808, 156985, 157046, 157112, 157183, 157315, 157384, 157575,
157576, 157586, 157612, 157810, 157814, 157815, 157880, 157881, 157882, 157884,
157887, 157901, 158979, 157987, 157989, 158986, 158997, 159076, 159101, 159100,
159200, 159201, 159207, 159527, 159532, 159540, 159583, 159618, 159658, 159659,
159660, 159661, 159703, 159704, 160076, 167356, 172025, 186736
llvm-svn: 190328
Summary:
This is needed so we can use generic columnWidthUTF8 in clang-format on
win32 simultaneously with a separate system-dependent implementations of
isPrint/columnWidth in TextDiagnostic.cpp to avoid attempts to print Unicode
characters using narrow-character interfaces (which is not supported on Windows,
and we'll have to figure out how to handle this).
Reviewers: jordan_rose
Reviewed By: jordan_rose
CC: llvm-commits, klimek
Differential Revision: http://llvm-reviews.chandlerc.com/D1559
llvm-svn: 189952
This is a re-commit of r189442; I'll follow up with clang changes.
The previous default was almost, but not quite enough digits to
represent a floating-point value in a manner which preserves the
representation when it's read back in. The larger default is much
less confusing.
I spent some time looking into printing exactly the right number of
digits if a precision isn't specified, but it's kind of complicated,
and I'm not really sure I understand what APFloat::toString is supposed
to output for FormatPrecision != 0 (or maybe the current API specification
is just silly, not sure which). I have a WIP patch if anyone is interested.
llvm-svn: 189624
The previous default was almost, but not quite enough digits to
represent a floating-point value in a manner which preserves the
representation when it's read back in. The larger default is much
less confusing.
I spent some time looking into printing exactly the right number of
digits if a precision isn't specified, but it's kind of complicated,
and I'm not really sure I understand what APFloat::toString is supposed
to output for FormatPrecision != 0 (or maybe the current API specification
is just silly, not sure which). I have a WIP patch if anyone is interested.
llvm-svn: 189442
Link.exe's command line options are case-insensitive. This patch
adds a new attribute to OptTable to let the option parser to compare
options, ignoring case.
Command lines are generally case-insensitive on Windows. CL.exe is an
exception. So this new attribute should be useful for other commands
running on Windows.
Differential Revision: http://llvm-reviews.chandlerc.com/D1485
llvm-svn: 189416
Clients of the option parsing library should handle it explicitly
using a KIND_REMAINING_ARGS option.
Clang and lld have been updated in r188316 and r188318, respectively.
Also fix -Wsign-compare warning in the option parsing test.
llvm-svn: 188323
This adds KIND_REMAINING_ARGS, a class of options that consume
all remaining arguments on the command line.
This will be used to support /link in clang-cl, which is used
to forward all remaining arguments to the linker.
It also allows us to remove the hard-coded handling of "--",
allowing clients (clang and lld) to implement that functionality
themselves with this new option class.
Differential Revision: http://llvm-reviews.chandlerc.com/D1387
llvm-svn: 188314
to find loops if the From and To instructions were in the same block.
Refactor the code a little now that we need to fill to start the CFG-walking
algorithm with more than one starting basic block sometimes.
Special thanks to Andrew Trick for catching an error in my understanding of
natural loops in code review.
llvm-svn: 188236
Summary:
Doing work in constructors is bad: this change suggests to
call SpecialCaseList::create(Path, Error) instead of
"new SpecialCaseList(Path)". Currently the latter may crash with
report_fatal_error, which is undesirable - sometimes we want to report
the error to user gracefully - for example, if he provides an incorrect
file as an argument of Clang's -fsanitize-blacklist flag.
Reviewers: pcc
Reviewed By: pcc
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1327
llvm-svn: 188156
Summary:
This is consistent with MacOSX implementation, and most terminals
actually display this character (checked on gnome-terminal, lxterminal, lxterm,
Terminal.app, iterm2). Actually, this is in line with the ISO Latin 1 standard
(ISO 8859-1), which defines it differently from the Unicode Standard. More
information here: http://www.cs.tut.fi/~jkorpela/shy.html
Reviewers: gribozavr, jordan_rose
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1310
llvm-svn: 187949
Summary:
This is a second attempt to get this right. After reading the Unicode
Standard I came up with the code that uses definitions of "printable" and
"column width" more suitable for terminal output (i.e. fixed-width fonts and
special treatment of many control characters).
The implementation here can probably be used for Windows and MacOS if someone
can test it properly.
The patch addresses PR14910.
Reviewers: jordan_rose, gribozavr
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1253
llvm-svn: 187837
This will be used to implement an optimisation for literal entries
in special case lists.
Differential Revision: http://llvm-reviews.chandlerc.com/D1278
llvm-svn: 187731
Everything that comes after -- should be treated as a filename. This
enables passing in filenames that would otherwise be conflated with
command-line options.
This is especially important for clang-cl which supports options
starting with /, which are easily conflatable with Unix-style
path names.
Differential Revision: http://llvm-reviews.chandlerc.com/D1274
llvm-svn: 187675
This makes option aliases more powerful by enabling them to
pass along arguments to the option they're aliasing.
For example, if we have a joined option "-foo=", we can now
specify a flag option "-bar" to be an alias of that, with the
argument "baz".
This is especially useful for the cl.exe compatible clang driver,
where many options are aliases. For example, this patch enables
us to alias "/Ox" to "-O3" (-O is a joined option), and "/WX" to
"-Werror" (again, -W is a joined option).
Differential Revision: http://llvm-reviews.chandlerc.com/D1245
llvm-svn: 187537
One form would accept a vector of pointers, and the other did not.
Make both accept vectors of pointers, and add an assertion
for the number of elements.
llvm-svn: 187464
The unix one was returning no_such_file_or_directory, but the windows one
was return success.
Update the one one caller that was depending on the old behavior.
llvm-svn: 187463
This avoids constant folding bitcast/ptrtoint/inttoptr combinations
that have illegal bitcasts between differently sized address spaces.
llvm-svn: 187455
It will now only convert the arguments / return value and call
the underlying function if the types are able to be bitcasted.
This avoids using fp<->int conversions that would occur before.
llvm-svn: 187444
IEEE-754R 1.4 Exclusions states that IEEE-754R does not specify the
interpretation of the sign of NaNs. In order to remove an irrelevant
variable that most floating point implementations do not use,
standardize add, sub, mul, div, mod so that operating anything with
NaN always yields a positive NaN.
In a later commit I am going to update the APIs for creating NaNs so
that one can not even create a negative NaN.
llvm-svn: 187314
Adds unit tests for it too.
Split BasicBlockUtils into an analysis-half and a transforms-half, and put the
analysis bits into a new Analysis/CFG.{h,cpp}. Promote isPotentiallyReachable
into llvm::isPotentiallyReachable and move it into Analysis/CFG.
llvm-svn: 187283
Both GCC and LLVM will implicitly define __ppc__ and __powerpc__ for
all PowerPC targets, whether 32- or 64-bit. They will both implicitly
define __ppc64__ and __powerpc64__ for 64-bit PowerPC targets, and not
for 32-bit targets. We cannot be sure that all other possible
compilers used to compile Clang/LLVM define both __ppc__ and
__powerpc__, for example, so it is best to check for both when relying
on either inside the Clang/LLVM code base.
This patch makes sure we always check for both variants. In addition,
it fixes one unnecessary check in lib/Target/PowerPC/PPCJITInfo.cpp.
(At least one of __ppc__ and __powerpc__ should always be defined when
compiling for a PowerPC target, no matter which compiler is used, so
testing for them is unnecessary.)
There are some places in the compiler that check for other variants,
like __POWERPC__ and _POWER, and I have left those in place. There is
no need to add them elsewhere. This seems to be in Apple-specific
code, and I won't take a chance on breaking it.
There is no intended change in behavior; thus, no test cases are
added.
llvm-svn: 187248