that are suppressed during template argument deduction. This change
queues diagnostics computed during template argument deduction. Then,
if the resulting function template specialization or partial
specialization is chosen by overload resolution or partial ordering
(respectively), we will emit the queued diagnostics at that point.
This addresses most of PR6784. However, the check for unnamed/local
template arguments (which existed before this change) is still only
skin-deep, and needs to be extended to look deeper into types. It must
be improved to finish PR6784.
llvm-svn: 116373
against a function type, be sure to check the type of the resulting
function template specialization against the desired function type
after substituting the deduced/defaulted template arguments. Fixes PR8196.
llvm-svn: 115086
already be determined by isCopyAssignmentOperator(), and was set too
late in the process for all clients to see the appropriate
value. Cleanup only; no functionality change.
llvm-svn: 114916
sequences for two conversion functions when in fact we are in the text
of initialization by a user-defined conversion sequences. Fixes PR8034.
llvm-svn: 113724
be a semantic requirement that a built-in overloaded operator is not
added to the overload set of there is already a user-defined
overloaded operator with the same parameter types. Fixes PR8087.
llvm-svn: 113713
with comma-separated lists. We never actually used the comma
locations, nor did we store them in the AST, but we did manage to
waste time during template instantiation to produce fake locations.
llvm-svn: 113495
For large floats/integers, APFloat/APInt will allocate memory from the heap to represent these numbers.
Unfortunately, when we use a BumpPtrAllocator to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
the APFloat/APInt values will never get freed.
I introduce the class 'APNumericStorage' which uses ASTContext's allocator for memory allocation and is used internally by FloatingLiteral/IntegerLiteral.
Fixes rdar://7637185
llvm-svn: 112361
an '&' expression from the second caller of ActOnIdExpression.
Teach template argument deduction that an overloaded id-expression
doesn't give a valid type for deduction purposes to a non-static
member function unless the expression has the correct syntactic
form.
Teach ActOnIdExpression that it shouldn't try to create implicit
member expressions for '&function', because this isn't a
permitted form of use for member functions.
Teach CheckAddressOfOperand to diagnose these more carefully.
Some of these cases aren't reachable right now because earlier
diagnostics interrupt them.
llvm-svn: 112258
One who seeks the Tao unlearns something new every day.
Less and less remains until you arrive at non-action.
When you arrive at non-action,
nothing will be left undone.
llvm-svn: 112244
only form pointers-to-member if the expression has the appropriate
form. This avoids assertions later on on invalid code, but also
allows us to properly resolve mixed-staticity overloads.
llvm-svn: 111987
conversion a second time for a conversion candidate (with the real
acting context), because the only problems we would find are access or
ambiguity issues that won't be diagnosed until we pick this
candidate. Add a test case to prove it to myself.
llvm-svn: 111526
conversion functions as if their acting context were the class that
we're converting from (the implicit object argument's
type). Retroactively tweaking the implicit conversion sequence, as we
were trying to do before, breaks the invariants of that implicit
conversion sequence (e.g., the types and conversions don't match
up). Fixes <rdar://problem/8018274>.
llvm-svn: 111520
implicit conversion sequences. In particular, model the "standard
conversion" from a class to its own type (or a base type) directly as
a standard conversion in the normal path *without* trying to determine
if there is a valid copy constructor. This appears to match the intent
of C++ [over.best.ics]p6 and more closely matches GCC and EDG.
As part of this, model non-lvalue reference initialization via
user-defined conversion in overloading the same way we handle it in
InitializationSequence, separating the "general user-defined
conversion" and "conversion to compatible class type" cases.
The churn in the overload-call-copycon.cpp test case is because the
test case was originally wrong; it assumed that we should do more
checking for copy constructors that we actually should, which affected
overload resolution.
Fixes PR7055. Bootstrapped okay.
llvm-svn: 110773
an lvalue of another, compatible Objective-C object type (e.g., a
subclass). Introduce a new initialization sequence step kind to
describe this binding, along with a new cast kind. Fixes PR7741.
llvm-svn: 110513
This takes some trickery since CastExpr has subclasses (and indeed,
is abstract).
Also, smoosh the CastKind into the bitfield from Expr.
Drops two words of storage from Expr in the common case of expressions
which don't need inheritance paths. Avoids a separate allocation and
another word of overhead in cases needing inheritance paths. Also has
the advantage of not leaking memory, since destructors for AST nodes are
never run.
llvm-svn: 110507
just means "not a function type", not "not a function type or void". This
changes behavior slightly, but generally in a way which accepts more code.
llvm-svn: 110303