verify that we aren't in a message-send expression before digging into
the identifier or looking ahead more tokens. Fixes a regression
(<rdar://problem/8483253>) I introduced with bracket insertion.
llvm-svn: 114968
of a binary expression, continue on and parse the right-hand side of
the binary expression anyway, but don't call the semantic actions to
type-check. Previously, we would see the error and then, effectively,
skip tokens until the end of the statement.
The result should be more useful recovery, both in the normal case
(we'll actually see errors beyond the first one in a statement), but
it also helps code completion do a much better job, because we do
"real" code completion on the right-hand side of an invalid binary
expression rather than completing with the recovery completion. For
example, given
x = p->y
if there is no variable named "x", we can still complete after the p->
as a member expression. Along the recovery path, we would have
completed after the "->" as if we were in an expression context, which
is mostly useless.
llvm-svn: 114225
sends. These are far trickier than instance messages, because we
typically have something like
NSArray alloc]
where it appears to be a declaration of a variable named "alloc" up
until we see the ']' (or a ':'), and at that point we can't backtrace.
So, we use a combination of syntactic and semantic disambiguation to
treat this as a message send only when the type is an Objective-C type
and it has the syntax of a class message send (which would otherwise
be ill-formed).
llvm-svn: 114057
narrow, almost useless case where we're inside a parenthesized
expression, e.g.,
(NSArray alloc])
The solution to the general case still eludes me.
llvm-svn: 114039
'[' is missing. Prior commits improving recovery also improved code
completion beyond the first selector, e.g., at or after the "to" in
calculator add:x to:y
but not after "calculator". We now provide the same completions for
calculator <CC>
that we would for
[calculator <CC>
if "calculator" is an expression whose type is something that can
receive Objective-C messages.
This code completion works for instance and super message sends, but not
class message sends.
llvm-svn: 113976
part of parser recovery. For example, given:
a method1:arg];
we detect after parsing the expression "a" that we have the start of a
message send expression. We pretend we've seen a '[' prior to the a,
then parse the remainder as a message send. We'll then give a
diagnostic+fix-it such as:
fixit-objc-message.m:17:3: error: missing '[' at start of message
send expression
a method1:arg];
^
[
The algorithm here is very simple, and always assumes that the open
bracket goes at the beginning of the message send. It also only works
for non-super instance message sends at this time.
llvm-svn: 113968
expression, e.g., after the '(' that could also be a type cast. Here,
we provide types as code-completion results in C/Objective-C (C++
already had them), although we wouldn't in a normal expression context.
llvm-svn: 113904
with comma-separated lists. We never actually used the comma
locations, nor did we store them in the AST, but we did manage to
waste time during template instantiation to produce fake locations.
llvm-svn: 113495
The extra data stored on user-defined literal Tokens is stored in extra
allocated memory, which is managed by the PreprocessorLexer because there isn't
a better place to put it that makes sure it gets deallocated, but only after
it's used up. My testing has shown no significant slowdown as a result, but
independent testing would be appreciated.
llvm-svn: 112458
an '&' expression from the second caller of ActOnIdExpression.
Teach template argument deduction that an overloaded id-expression
doesn't give a valid type for deduction purposes to a non-static
member function unless the expression has the correct syntactic
form.
Teach ActOnIdExpression that it shouldn't try to create implicit
member expressions for '&function', because this isn't a
permitted form of use for member functions.
Teach CheckAddressOfOperand to diagnose these more carefully.
Some of these cases aren't reachable right now because earlier
diagnostics interrupt them.
llvm-svn: 112258
One who seeks the Tao unlearns something new every day.
Less and less remains until you arrive at non-action.
When you arrive at non-action,
nothing will be left undone.
llvm-svn: 112244
- move DeclSpec &c into the Sema library
- move ParseAST into the Parse library
Reflect this change in a thousand different includes.
Reflect this change in the link orders.
llvm-svn: 111667
parenthesized, unlike in C++, e.g.,
C has: typeof ( expression)
C++ has: typeof unary-expression
So, once we've parsed a parenthesized expression after typeof, we
should only go on to parse the postfix expression suffix if we're in
C++. Fixes <rdar://problem/8237491>.
llvm-svn: 109606
allows Sema some limited access to the current scope, which we only
use in one way: when Sema is performing some kind of declaration that
is not directly driven by the parser (e.g., due to template
instantiatio or lazy declaration of a member), we can find the Scope
associated with a DeclContext, if that DeclContext is still in the
process of being parsed.
Use this to make the implicit declaration of special member functions
in a C++ class more "scope-less", rather than using the NULL Scope hack.
llvm-svn: 107491
of isSimpleObjCMessageExpression checks the language,
so change a dynamic check into an assert.
isSimpleObjCMessageExpression is expensive, so only do it
in the common case when it is likely to matter: when the [
of the postfix expr starts on a new line. This should avoid
doing lookahead for every array expression.
llvm-svn: 105229
a simple, quick check to determine whether the expression starting
with '[' can only be an Objective-C message send. If so, don't parse
it as an array subscript expression. This improves recovery for, e.g.,
[a method1]
[a method2]
so that we now produce
t.m:10:13: error: expected ';' after expression
[a method]
^
instead of some mess about expecting ']'.
llvm-svn: 105221
type that we expect to see at a given point in the grammar, e.g., when
initializing a variable, returning a result, or calling a function. We
don't prune the candidate set at all, just adjust priorities to favor
things that should type-check, using an ultra-simplified type system.
llvm-svn: 105128
1) Suppress diagnostics as soon as we form the code-completion
token, so we don't get any error/warning spew from the early
end-of-file.
2) If we consume a code-completion token when we weren't expecting
one, go into a code-completion recovery path that produces the best
results it can based on the context that the parser is in.
llvm-svn: 104585
there are already two spaces before the token where the : was expected,
put the : in between the spaces. This means we get it right in both
of these cases:
t.c:2:17: error: expected ':'
return a ? b c;
^
:
t.c:3:16: error: expected ':'
return a ? b c;
^
:
In the later case, the diagnostic says to insert ": ", in the former
case it says to insert ":" between the spaces. This fixes rdar://8007231
llvm-svn: 104569
Objective-C++ have a more complex grammar than in Objective-C
(surprise!), because
(1) The receiver of an instance message can be a qualified name such
as ::I or identity<I>::type.
(2) Expressions in C++ can start with a type.
The receiver grammar isn't actually ambiguous; it just takes a bit of
work to parse past the type before deciding whether we have a type or
expression. We do this in two places within the grammar: once for
message sends and once when we're determining whether a []'d clause in
an initializer list is a message send or a C99 designated initializer.
This implementation of Objective-C++ message sends contains one known
extension beyond GCC's implementation, which is to permit a
typename-specifier as the receiver type for a class message, e.g.,
[typename compute_receiver_type<T>::type method];
Note that the same effect can be achieved in GCC by way of a typedef,
e.g.,
typedef typename computed_receiver_type<T>::type Computed;
[Computed method];
so this is merely a convenience.
Note also that message sends still cannot involve dependent types or
values.
llvm-svn: 102031
sends. Major changes include:
- Expanded the interface from two actions (ActOnInstanceMessage,
ActOnClassMessage), where ActOnClassMessage also handled sends to
"super" by checking whether the identifier was "super", to three
actions (ActOnInstanceMessage, ActOnClassMessage,
ActOnSuperMessage). Code completion has the same changes.
- The parser now resolves the type to which we are sending a class
message, so ActOnClassMessage now accepts a TypeTy* (rather than
an IdentifierInfo *). This opens the door to more interesting
types (for Objective-C++ support).
- Split ActOnInstanceMessage and ActOnClassMessage into parser
action functions (with their original names) and semantic
functions (BuildInstanceMessage and BuildClassMessage,
respectively). At present, this split is onyl used by
ActOnSuperMessage, which decides which kind of super message it
has and forwards to the appropriate Build*Message. In the future,
Build*Message will be used by template instantiation.
- Use getObjCMessageKind() within the disambiguation of Objective-C
message sends vs. array designators.
Two notes about substandard bits in this patch:
- There is some redundancy in the code in ParseObjCMessageExpr and
ParseInitializerWithPotentialDesignator; this will be addressed
shortly by centralizing the mapping from identifiers to type names
for the message receiver.
- There is some #if 0'd code that won't likely ever be used---it
handles the use of 'super' in methods whose class does not have a
superclass---but could be used to model GCC's behavior more
closely. This code will die in my next check-in, but I want it in
Subversion.
llvm-svn: 102021