ObjCBOOLSummaryProvider was incorrectly treating BOOL as unsigned and this is now fixed.
Also adding tests for one bit bit-fields of BOOL and unsigned char.
lldb-vsdode was communicating the list of modules to the IDE with events, which in practice ended up having some drawbacks
- when debugging large targets, the number of these events were easily 10k, which polluted the messages being transmitted, which caused the following: a harder time debugging the messages, a lag after terminated the process because of these messages being processes (this could easily take several seconds). The latter was specially bad, as users were complaining about it even when they didn't check the modules view.
- these events were rarely used, as users only check the modules view when something is wrong and they try to debug things.
After getting some feedback from users, we realized that it's better to not used events but make this simply a request and is triggered by users whenever they needed.
This diff achieves that and does some small clean up in the existing code.
Differential Revision: https://reviews.llvm.org/D94033
The original patch got reverted as a dependency of cf1c774d6a .
That patch got relanded so it's also necessary to reland this patch.
Original summary:
After cf1c774d6a, Clang seems to generate code
that is more similar to icc/Clang, so we can use the same line numbers for
all compilers in this test.
The DSYM variant of this test is failing since D94890. But as we explicitly
try to disable the DSYM generation in the makefile and build the archive on
our own, I don't see why we even need to run the DSYM version of the test.
This patch disables the generated derived versions of this test for the
different debug information containers (which includes the failing DSYM one).
Currently when LLDB has enough data in the debug information to import the `std` module,
it will just try to import it. However when debugging libraries where the sources aren't
available anymore, importing the module will generate a confusing diagnostic that
the module couldn't be built.
For the fallback mode (where we retry failed expressions with the loaded module), this
will cause the second expression to fail with a module built error instead of the
actual parsing issue in the user expression.
This patch adds checks that ensures that we at least have any source files in the found
include paths before we try to import the module. This prevents the module from being
loaded in the situation described above which means we don't emit the bogus 'can't
import module' diagnostic and also don't waste any time retrying the expression in the
fallback mode.
For the unit tests I did some refactoring as they now require a VFS with the files in it
and not just the paths. The Python test just builds a binary with a fake C++ module,
then deletes the module before debugging.
Fixes rdar://73264458
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D95096
Copy paste error, but the test still built on macOS. Weird.
It failed on debian linux with an error about -fno-limit-debug-info
not being a supported flag??? Not sure how this goof would cause
that error, but let's see if it did...
If they occurred before the constructor that used them, we would refuse to
set the breakpoint because we thought they were crossing function boundaries.
Differential Revision: https://reviews.llvm.org/D94846
This test is flakey on Windows and on failure it hangs causing the test suite to fail and future builds (on the buildbot, especially) to fail because they cannot re-write the files that are currently in use
This patch adds a new test case which depends on AArch64 SVE support and
dynamic resize capability enabled. It created two seperate threads which
have different values of sve registers and SVE vector granule at various
points during execution.
We test that LLDB is doing the size and offset updates properly for all
of the threads including the main thread and when we VG is updated using
prctl call or by 'register write vg' command the appropriate changes are
also update in register infos.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D82866
The test couldn't find lldb-server as it's path was being overridden by
LLDB_DEBUGSERVER_PATH environment variable (pointing to debugserver).
This test should always use lldb-server, as it tests its platform
capabilities.
There's no need for the environment override, as lldb-server tests
should test the executable they just built, so I just remote the
override capability.
When a command option does not have a short version
(e.g. -f for --file), we use an arbitrary value in the
short_option field to mark it as invalid.
(though this value is unqiue to be used later for other
things)
We check that this short option is valid to print using
llvm::isPrint. This implicitly casts our int to char,
meaning we check the last char of any short_option value.
Since the arbitrary value we chose for these options is
some shortened hex version of the name, this returned true
even for invalid values.
Since llvm::isPrint returns true we later call std::islower
and/or std::isupper on the short_option value. (the int)
Calling these functions with something that cannot be validly
converted to unsigned char is undefined. Somehow we got/get
away with this but for me compiling with g++-9 I got a crash
for "help memory read".
The other command that uses this is "target variable" but that
didn't crash for unknown reasons.
Checking that short_option can fit into an unsigned char before
we call llvm::isPrint means we will not attempt to call islower/upper
on these options since we have no reason to print them.
This also fixes bogus short options being shown for "memory read"
and target variable.
For "target variable", before:
-e <filename> ( --file <filename> )
-b <filename> ( --shlib <filename> )
After:
--file <filename>
--shlib <filename>
(note that the bogus short options are just the bottom byte of our
arbitrary short_option value)
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D94917
The test was marked as remote-only, which means it was run ~never, and
accumulated various problems. This commit modifies the test to run
locally and includes a couple of other fixes necessary to make it run:
- moves the "invoke" method into the "Base" test class
- adds []'s around the IP address in a couple more places to make things
work with IPv6
The test is now marked as skipped when running the remote test suite. It
would be possible to make it run both locally and remotely, but this
would require writing a lot special logic for the remote case, and that
is not worth it.
This commit vAttachWait in lldb-server, so --waitfor can be used on
Linux
Reviewed By: labath, clayborg
Differential Revision: https://reviews.llvm.org/D93895
The way this test is structured right now, I set a breakpoint on
the instruction before the __builtin_trap. It hits the breakpoint,
disables the breakpoint, and instruction steps. This hits the
builtin_trap instruction which debugserver (on arm64) now advances
to the next instruction and reports that address to lldb. lldb
doesn't recognize this as a proper response to the instruction
step and continues executing until the next trap, and the test fails.
Local values are constants or addresses that can't be folded into
the instruction that uses them. FastISel materializes these in a
"local value" area that always dominates the current insertion
point, to try to avoid materializing these values more than once
(per block).
https://reviews.llvm.org/D43093 added code to sink these local
value instructions to their first use, which has two beneficial
effects. One, it is likely to avoid some unnecessary spills and
reloads; two, it allows us to attach the debug location of the
user to the local value instruction. The latter effect can
improve the debugging experience for debuggers with a "set next
statement" feature, such as the Visual Studio debugger and PS4
debugger, because instructions to set up constants for a given
statement will be associated with the appropriate source line.
There are also some constants (primarily addresses) that could be
produced by no-op casts or GEP instructions; the main difference
from "local value" instructions is that these are values from
separate IR instructions, and therefore could have multiple users
across multiple basic blocks. D43093 avoided sinking these, even
though they were emitted to the same "local value" area as the
other instructions. The patch comment for D43093 states:
Local values may also be used by no-op casts, which adds the
register to the RegFixups table. Without reversing the RegFixups
map direction, we don't have enough information to sink these
instructions.
This patch undoes most of D43093, and instead flushes the local
value map after(*) every IR instruction, using that instruction's
debug location. This avoids sometimes incorrect locations used
previously, and emits instructions in a more natural order.
In addition, constants materialized due to PHI instructions are
not assigned a debug location immediately; instead, when the
local value map is flushed, if the first local value instruction
has no debug location, it is given the same location as the
first non-local-value-map instruction. This prevents PHIs
from introducing unattributed instructions, which would either
be implicitly attributed to the location for the preceding IR
instruction, or given line 0 if they are at the beginning of
a machine basic block. Neither of those consequences is good
for debugging.
This does mean materialized values are not re-used across IR
instruction boundaries; however, only about 5% of those values
were reused in an experimental self-build of clang.
(*) Actually, just prior to the next instruction. It seems like
it would be cleaner the other way, but I was having trouble
getting that to work.
This reapplies commits cf1c774d and dc35368c, and adds the
modification to PHI handling, which should avoid problems
with debugging under gdb.
Differential Revision: https://reviews.llvm.org/D91734
Remove the stale LLDB-Info.plist which was only used by TestHelp.py. The
latter would try to parse the version number from the plist and use that
to verify the version in the help output. Of course this never matched
so it would fall back to matching any arbitrary version.
This patch does *not* change the real LLDB-Info.plist.in file which is
used for the LLDB Framework.
Adds the RISC-V ArchSpec bits contributed by @simoncook as part of D62732,
plus logic to distinguish between riscv32 and riscv64 based on ELF class.
The patch follows the implementation approach previously used for MIPS.
It defines RISC-V architecture subtypes and inspects the ELF header,
namely the ELF class, to detect the right subtype.
Differential Revision: https://reviews.llvm.org/D86292
gcc already produces debug info with this form
-freorder-block-and-partition
clang produces this sort of thing with -fbasic-block-sections and with a
coming-soon tweak to use ranges in DWARFv5 where they can allow greater
reuse of debug_addr than the low/high_pc forms.
This fixes the case of breaking on a function name, but leaves broken
printing a variable - a follow-up commit will add that and improve the
test case to match.
Differential Revision: https://reviews.llvm.org/D94063
The scoped enum tests depend on DW_AT_enum_class which was added in
Dwarf 4.
I made part of the test conditional on the Dwarf version instead of
splitting it into a separate test and using the decorator to avoid the
overhead of setting up the test.
Add stN aliases for the FPU (stmmN) registers on MacOSX. This should
improve compatibility between MacOSX and other platforms, and partially
fix x86*-fp-write tests without having to duplicate them. Note that
the tests are currently still broken due to ftag incompatibility.
Differential Revision: https://reviews.llvm.org/D91847
1 - Partial Statements
The interpreter loop runs every line it receives, so partial
Lua statements are not being handled properly. This is a problem for
multiline breakpoint scripts since the interpreter loop, for this
particular case, is just an abstraction to a partially parsed function
body declaration.
This patch addresses this issue and as a side effect improves the
general Lua interpreter loop as well. It's now possible to write partial
statements in the 'script' command.
Example:
(lldb) script
>>> do
..> local a = 123
..> print(a)
..> end
123
The technique implemented is the same as the one employed by Lua's own REPL implementation.
Partial statements always errors out with the '<eof>' tag in the error
message.
2 - CheckSyntax in Lua.h
In order to support (1), we need an API for just checking the syntax of string buffers.
3 - Multiline scripted breakpoints
Finally, with all the base features implemented this feature is
straightforward. The interpreter loop behaves exactly the same, the
difference is that it will aggregate all Lua statements into the body of
the breakpoint function. An explicit 'quit' statement is needed to exit the
interpreter loop.
Example:
(lldb) breakpoint command add -s lua
Enter your Lua command(s). Type 'quit' to end.
The commands are compiled as the body of the following Lua function
function (frame, bp_loc, ...) end
..> print(456)
..> a = 123
..> quit
Differential Revision: https://reviews.llvm.org/D93481
In split DWARF v5 files, the DWO id is no longer in the DW_AT_GNU_dwo_id
attribute. It's in the CU header instead. This change makes lldb look in
both places.
Differential Revision: https://reviews.llvm.org/D93444
Copy changes, including:
- NativeProcessNetBSD::GetLoadedModuleFileSpec()
and NativeProcessNetBSD::GetFileLoadAddress() methods
- split x86 register sets by CPU extensions
- use offset/size-based register reading/writing
Differential Revision: https://reviews.llvm.org/D93541
The tests don't work with remote debugservers. This isn't a problem with
any particular test, but the test infrastructure itself, which is why
each of these tests has a @skipIfDarwinEmbedded decorator.
This patch replaces that with a central category-based solution. It also
moves the ad-hoc windows skipping mechanism there too.
This uses the same approach as the debug info tests to avoid needing to
explicitly spell out the two kinds of tests. I convert a handful of
tests to the new mechanism. The rest will be converted in follow-up
patches.
Nearly all of our lldb-server tests have two flavours (lldb-server and
debugserver). Each of them is tagged with an appropriate decorator, and
each of them starts with a call to a matching "init" method. The init
calls are mandatory, and it's not possible to meaningfully combine them
with a different decorator.
This patch leverages the existing decorators to also tag the tests with
the appropriate debug server tag, similar to how we do with debug info
flavours. This allows us to make the "init" calls from inside the common
setUp method.
This reverts commit a01b26fb51, because it
breaks the "finish" command in some way -- the command does not
terminate after it steps out, but continues running the target. The
exact blast radius is not clear, but it at least affects the usage of
the "finish" command in TestGuiBasicDebug.py. The error is *not*
gui-related, as the same issue can be reproduced by running the same
steps outside of the gui.
There is some kind of a race going on, as the test fails only 20% of the
time on the buildbot.
The test appears to expect the inferior to be stopped, but the custom
"attach commands" leave it in a running state.
It's unclear how this could have ever worked.
Fix the POSIX-DYLD plugin to update the cached executable path after
attaching. Previously, the path was cached in DYLDRendezvous
constructor and not updated afterwards. This meant that if LLDB was
attaching to a process (e.g. via connecting to lldb-server), the code
stored the empty path before DidAttach() resolved it. The fix updates
the cached path in DidAttach().
This fixes a new instance of https://llvm.org/pr17880
Differential Revision: https://reviews.llvm.org/D92264
Explicitly consider the libraries reported on the initial rendezvous
breakpoint hit added. This is necessary on FreeBSD since the dynamic
loader issues only a single 'consistent' state rendezvous breakpoint hit
for all the libraries present in DT_NEEDED. It is also helpful on Linux
where it ensures that ld-linux is considered loaded as well
as the shared system libraries reported afterwards.
Reenable memory maps on FreeBSD since this fixed the issue triggered
by them.
Differential Revision: https://reviews.llvm.org/D92187
This patch exposes the Target::CreateBreakpoint overload with the
boolean argument to move to the neareast code to the SBAPI.
This is useful when creating column breakpoints to restrict lldb's
resolution to the pointed source location, preventing it to go to the next
line.
rdar://72196842
Differential Revision: https://reviews.llvm.org/D93266
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>