from Python. If you don't need to refer to the result in another expression, there's no
need to bloat the persistent variable table with them since you already have the result
SBValue to work with.
<rdar://problem/17963645>
llvm-svn: 215244
It was hardcoding the value "python", which will end up at best
getting a different python executable (if the user has overridden
the value of PYTHON_EXECUTABLE), and at worst encountering an
error (if there is no copy of python on the system path).
This patch changes the script to use sys.executable so that it
runs the sub-script with the same executable that it was run with.
llvm-svn: 214618
_lldb is built as an extension module on Windows. Normally to load
an extension module named 'foo', Python would look for the file
'foo.pyd'. However, when a debug interpreter is used, Python will
look for the file 'foo_d.pyd'. This change checks the build
configuration and creates the correct symlink name based on the
build configuration.
llvm-svn: 213306
This patch fixes a number of issues with embedded Python on
Windows. In particular:
1) The script that builds the python modules was normalizing the
case of python filenames during copies. The module name is
the filename, and is case-sensitive, so this was breaking code.
2) Changes the build to not attempt to link against python27.lib
(e.g. the release library) when linking against msvcrt debug
library. Doing a debug build of LLDB with embedded python
support now requires you to provide your own self-compiled
debug version of python.
3) Don't import termios when initializing the interpreter. This
is part of a larger effort to remove the dependency on termios
since it is not available on Windows. This particular instance
was unnecessary and unused.
Reviewed by: Todd Fiala
Differential Revision: http://reviews.llvm.org/D4441
llvm-svn: 212785
- Ported the SWIG wrapper shell scripts to Python so that they would work on Windows too along with other platforms
- Updated CMake handling to fix SWIG errors and manage sym-linking on Windows to liblldb.dll
- More build fixes for Windows
The pending issues are that two Python modules, termios and pexpect are not available on Windows.
These are currently required for the Python command interpreter to be used from within LLDB.
llvm-svn: 212111
Now that I'm building Linux with clang, I'm seeing more clang warnings.
This fills in some extra fields missing in the final end-of-structure-array
marker.
llvm-svn: 211812
See http://reviews.llvm.org/D4221 for details.
This commit allows you to control the signals that lldb will suppress, stop or forward using the Python and C++ APIs.
Change by Russell Harmon.
Xcode build system changes (and any mistakes) by Todd Fiala. Tested on MacOSX 10.9.3 and Xcode 6 beta. (Xcode 5 is hitting the dependency checker crasher on all my systems).
llvm-svn: 211526
lldb support. I'll be doing more testing & cleanup but I wanted to
get the initial checkin done.
This adds a new SBExpressionOptions::SetLanguage API for selecting a
language of an expression.
I added adds a new SBThread::GetInfoItemByPathString for retriving
information about a thread from that thread's StructuredData.
I added a new StructuredData class for representing
key-value/array/dictionary information (e.g. JSON formatted data).
Helper functions to read JSON and create a StructuredData object,
and to print a StructuredData object in JSON format are included.
A few Cocoa / Cocoa Touch data formatters were updated by Enrico
to track changes in iOS 8 / Yosemite.
Before we query a thread's extended information, the system runtime may
provide hints to the remote debug stub that it will use to retrieve values
out of runtime structures. I added a new SystemRuntime method
AddThreadExtendedInfoPacketHints which allows the SystemRuntime to add
key-value type data to the initial request that we send to the remote stub.
The thread-format formatter string can now retrieve values out of a thread's
extended info structured data. The default thread-format string picks up
two of these - thread.info.activity.name and thread.info.trace_messages.
I added a new "jThreadExtendedInfo" packet in debugserver; I will
add documentation to the lldb-gdb-remote.txt doc soon. It accepts
JSON formatted arguments (most importantly, "thread":threadnum) and
it returns a variety of information regarding the thread to lldb
in JSON format. This JSON return is scanned into a StructuredData
object that is associated with the thread; UI layers can query the
thread's StructuredData to see if key-values are present, and if
so, show them to the user. These key-values are likely to be
specific to different targets with some commonality among many
targets. For instance, many targets will be able to advertise the
pthread_t value for a thread.
I added an initial rough cut of "thread info" command which will print
the information about a thread from the jThreadExtendedInfo result.
I need to do more work to make this format reasonably.
Han Ming added calls into the pmenergy and pmsample libraries if
debugserver is run on Mac OS X Yosemite to get information about the
inferior's power use.
I added support to debugserver for gathering the Genealogy information
about threads, if it exists, and returning it in the jThreadExtendedInfo
JSON result.
llvm-svn: 210874
Rationale:
Pretty simply, the idea is that sometimes type names are way too long and contain way too many details for the average developer to care about. For instance, a plain ol' vector of int might be shown as
std::__1::vector<int, std::__1::allocator<....
rather than the much simpler std::vector<int> form, which is what most developers would actually type in their code
Proposed solution:
Introduce a notion of "display name" and a corresponding API GetDisplayTypeName() to return such a crafted for visual representation type name
Obviously, the display name and the fully qualified (or "true") name are not necessarily the same - that's the whole point
LLDB could choose to pick the "display name" as its one true notion of a type name, and if somebody really needs the fully qualified version of it, let them deal with the problem
Or, LLDB could rename what it currently calls the "type name" to be the "display name", and add new APIs for the fully qualified name, making the display name the default choice
The choice that I am making here is that the type name will keep meaning the same, and people who want a type name suited for display will explicitly ask for one
It is the less risky/disruptive choice - and it should eventually make it fairly obvious when someone is asking for the wrong type
Caveats:
- for now, GetDisplayTypeName() == GetTypeName(), there is no logic to produce customized display type names yet.
- while the fully-qualified type name is still the main key to the kingdom of data formatters, if we start showing custom names to people, those should match formatters
llvm-svn: 209072
the SystemRuntime to check if a thread will have any problems
performing an inferior function call so the driver can skip
making that function call on that thread. Often the function
call can be executed on another thread instead.
<rdar://problem/16777874>
llvm-svn: 208732
The FreeBSD package building cluster installs e.g. 'python2.7', but no
plain 'python' to avoid version-related issues.
CMake's FindPythonInterp locates an interpreter with such a name and
provides it in the PYTHON_EXECUTABLE variable. Use that if it's set,
falling back to the original '/usr/bin/env python' otherwise.
This is a missing part of LLDB commit r207122.
Patch by Brooks Davis in FreeBSD ports commit r353052
llvm-svn: 208204
currently associated with a given thread, on relevant targets.
Change the queue detection code to verify that the queues
associated with all live threads are included in the list.
<rdar://problem/16411314>
llvm-svn: 207160
The FreeBSD package building cluster installs e.g. 'python2.7', but no
plain 'python' to avoid version-related issues.
CMake's FindPythonInterp locates an interpreter with such a name and
provides it in the PYTHON_EXECUTABLE variable. Use that if it's set,
falling back to the original '/usr/bin/env python' otherwise.
Patch by Brooks Davis in FreeBSD ports commit r352012
llvm-svn: 207122
You can either provide the function name, or function body text.
Also propagate the compilation error up from where it is checked so we can report compilation errors.
<rdar://problem/9898371>
llvm-svn: 205380
These changes were written by Greg Clayton, Jim Ingham, Jason Molenda.
It builds cleanly against TOT llvm with xcodebuild. I updated the
cmake files by visual inspection but did not try a build. I haven't
built these sources on any non-Mac platforms - I don't think this
patch adds any code that requires darwin, but please let me know if
I missed something.
In debugserver, MachProcess.cpp and MachTask.cpp were renamed to
MachProcess.mm and MachTask.mm as they picked up some new Objective-C
code needed to launch processes when running on iOS.
llvm-svn: 205113
changing the data it returns; this change accepts either the old format or
the new format. It doesn't yet benefit from the new format's additions -
but I need to get this checked in so we aren't rev-locked.
Also add a missing .i entry for SBQueue::GetNumRunningItems() missing from
the last checkin.
<rdar://problem/16272115>
llvm-svn: 203421
Also remove SetStopOthers from the ThreadPlanCallFunction, because if the value you have doesn't match what is
in the EvaluateExpressionOptions the plan was passed when created it won't work correctly.
llvm-svn: 202464
in lldb.svn/Makefile
* Use CPP.Flags to export the declaration. The current solution broke all builds
on http://llvm-jenkins.debian.net/
llvm-svn: 202270
Bug fix for pr18841:
http://llvm.org/bugs/show_bug.cgi?id=18841
This change creates a stub Python readline.so module that does almost
nothing. Its whole purpose is to prevent Python from loading the real
module, something it does during the embedded Python interpreter's
initialization sequence (and way before lldb ever requests it within
embedded_interpreter.py).
On Ubuntu 12.04 and 13.10 x86_64, and in the Python 2.7.6 tree, the
stock Python readline module links against the GNU readline library.
This appears to be the case on all Pythons except where __APPLE__ is
defined. LLDB now requires linking against the libedit library.
Something about having both libedit.so and libreadline.so linked into
the same process space is causing the Python readline.so to trigger a
NULL memory access. I have put in a separate patch to python.org.
This suppression of embedded interpreter readline support can be
removed if at least any one of the following happens:
1. The stock python distribution accepts a patch similar to what I
submitted to Python 2.7.6's Modules/readline.c file.
2. The stock python distribution implements Modules/readline.c in
terms of libedit's readline compatibility mode (i.e. essentially
compiles it the way __APPLE__ compiles that module) under Linux.
3. a clean-room implementation of the python readline module is
implemented against libedit (either readline compatibility mode or
native libedit). This could be implemented within the readline.cpp
file that this change introduces. It cannot be a fork of python's
readline.c module due to llvm licensing.
The net effect of this change on Linux is that the embedded python's
readline support will not exist.
llvm-svn: 202243
libldi library to collect extended backtrace information; switch
to the libBacktraceRecording library and its APIs. Complete the
work of adding QueueItems to Queues and allow for the QueueItems
to be interrogated about their extended backtraces in turn.
There's still cleanup and documentation to do on this code but the
code is functional and I it's a good time to get the work-in-progress
checked in.
<rdar://problem/15314027>
llvm-svn: 200822
PyTuple_SetItem steals a reference to the item it inserts in the tuple
This, plus the Py_XDECREF of the tuple a few lines below, causes our session dictionary to go away after the first time a SWIG layer function is called - with disastrous effects for the first subsequent attempt to use any functionality in ScriptInterpreterPython
This fixes it
llvm-svn: 200429
The many many benefits include:
1 - Input/Output/Error streams are now handled as real streams not a push style input
2 - auto completion in python embedded interpreter
3 - multi-line input for "script" and "expression" commands now allow you to edit previous/next lines using up and down arrow keys and this makes multi-line input actually a viable thing to use
4 - it is now possible to use curses to drive LLDB (please try the "gui" command)
We will need to deal with and fix any buildbot failures and tests and arise now that input/output and error are correctly hooked up in all cases.
llvm-svn: 200263
SBType SBType::GetTypedefedType();
Also added the ability to get a type by type ID from a SBModule:
SBType SBModule::GetTypeByID (lldb::user_id_t uid);
llvm-svn: 199939
"Open LLDB and run:
(lldb) script print lldb.debugger.GetInputFileHandle()
This puts the debugger into a catatonic state and all interactions seem
to enter a black hole. The reason is that executing this commnand
actually *CLOSES* the input file handle and so all input is dropped on
the floor. Oof!
The fix is simple: flush a descriptor, instead of closing it, when
transferring ownership."
llvm-svn: 198835
The "type format add" command gets a new flag --type (-t). If you pass -t <sometype>, upon fetching the value for an object of your type,
LLDB will display it as-if it was of enumeration type <sometype>
This is useful in cases of non-contiguous enums where there are empty gaps of unspecified values, and as such one cannot type their variables as the enum type,
but users would still like to see them as-if they were of the enum type (e.g. DWARF field types with their user-reserved ranges)
The SB API has also been improved to handle both types of formats, and a test case is added
llvm-svn: 198105
libdispatch aka Grand Central Dispatch (GCD) queues. Still fleshing out the
documentation and testing of these but the overall API is settling down so it's
a good time to check it in.
<rdar://problem/15600370>
llvm-svn: 197190
<rdar://problem/15314403>
This patch adds a new lldb_private::SectionLoadHistory class that tracks what shared libraries were loaded given a process stop ID. This allows us to keep a history of the sections that were loaded for a time T. Many items in history objects will rely upon the process stop ID in the future.
llvm-svn: 196557
the installed SDK to using the current OS installed headers/libraries.
This change is to address the removal of the Python framework
from the Mac OS X 10.9 (Mavericks) SDK, and is the recommended
workaround via https://developer.apple.com/library/mac/technotes/tn2328/_index.html
llvm-svn: 195557
Example code:
remote_platform = lldb.SBPlatform("remote-macosx");
remote_platform.SetWorkingDirectory("/private/tmp")
debugger.SetSelectedPlatform(remote_platform)
connect_options = lldb.SBPlatformConnectOptions("connect://localhost:1111");
err = remote_platform.ConnectRemote(connect_options)
if err.Success():
print >> result, 'Connected to remote platform:'
print >> result, 'hostname: %s' % (remote_platform.GetHostname())
src = lldb.SBFileSpec("/Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework", False)
dst = lldb.SBFileSpec()
# copy src to platform working directory since "dst" is empty
err = remote_platform.Install(src, dst);
if err.Success():
print >> result, '%s installed successfully' % (src)
else:
print >> result, 'error: failed to install "%s": %s' % (src, err)
Implemented many calls needed in lldb-platform to be able to install a directory that contains symlinks, file and directories.
The remote lldb-platform can now launch GDB servers on the remote system so that remote debugging can be spawned through the remote platform when connected to a remote platform.
The API in SBPlatform is subject to change and will be getting many new functions.
llvm-svn: 195273
(and same thing to Thread base class) which can be used when looking
at an ExtendedBacktrace thread; it will try to find the IndexID() of
the original thread that was executing this backtrace when it was
recorded. If lldb can't find a record of that thread, it will return
the same value as IndexID() for the ExtendedBacktrace thread.
llvm-svn: 194912
It completes the job of using EvaluateExpressionOptions consistently throughout
the inferior function calling mechanism in lldb begun in Greg's patch r194009.
It removes a handful of alternate calls into the ClangUserExpression/ClangFunction/ThreadPlanCallFunction which
were there for convenience. Using the EvaluateExpressionOptions removes the need for them.
Using that it gets the --debug option from Greg's patch to work cleanly.
It also adds another EvaluateExpressionOption to not trap exceptions when running expressions. You shouldn't
use this option unless you KNOW your expression can't throw beyond itself. This is:
<rdar://problem/15374885>
At present this is only available through the SB API's or python.
It fixes a bug where function calls would unset the ObjC & C++ exception breakpoints without checking whether
they were set by somebody else already.
llvm-svn: 194182
GetThreadOriginExtendedBacktraceTypeAtIndex methods to
SBProcess.
Add documentation for the GetQueueName and GetQueueID methods
to SBThread.
<rdar://problem/15314369>
llvm-svn: 194063
pure virtual base class and made StackFrame a subclass of that. As
I started to build on top of that arrangement today, I found that it
wasn't working out like I intended. Instead I'll try sticking with
the single StackFrame class -- there's too much code duplication to
make a more complicated class hierarchy sensible I think.
llvm-svn: 193983
defines a protocol that all subclasses will implement. StackFrame
is currently the only subclass and the methods that Frame vends are
nearly identical to StackFrame's old methods.
Update all callers to use Frame*/Frame& instead of pointers to
StackFrames.
This is almost entirely a mechanical change that touches a lot of
the code base so I'm committing it alone. No new functionality is
added with this patch, no new subclasses of Frame exist yet.
I'll probably need to tweak some of the separation, possibly moving
some of StackFrame's methods up in to Frame, but this is a good
starting point.
<rdar://problem/15314068>
llvm-svn: 193907
When debugging with the GDB remote in LLDB, LLDB uses special packets to discover the
registers on the remote server. When those packets aren't supported, LLDB doesn't
know what the registers look like. This checkin implements a setting that can be used
to specify a python file that contains the registers definitions. The setting is:
(lldb) settings set plugin.process.gdb-remote.target-definition-file /path/to/module.py
Inside module there should be a function:
def get_dynamic_setting(target, setting_name):
This dynamic setting function is handed the "target" which is a SBTarget, and the
"setting_name", which is the name of the dynamic setting to retrieve. For the GDB
remote target definition the setting name is 'gdb-server-target-definition'. The
return value is a dictionary that follows the same format as the OperatingSystem
plugins follow. I have checked in an example file that implements the x86_64 GDB
register set for people to see:
examples/python/x86_64_target_definition.py
This allows LLDB to debug to any archticture that is support and allows users to
define the registers contexts when the discovery packets (qRegisterInfo, qHostInfo)
are not supported by the remote GDB server.
A few benefits of doing this in Python:
1 - The dynamic register context was already supported in the OperatingSystem plug-in
2 - Register contexts can use all of the LLDB enumerations and definitions for things
like lldb::Format, lldb::Encoding, generic register numbers, invalid registers
numbers, etc.
3 - The code that generates the register context can use the program to calculate the
register context contents (like offsets, register numbers, and more)
4 - True dynamic detection could be used where variables and types could be read from
the target program itself in order to determine which registers are available since
the target is passed into the python function.
This is designed to be used instead of XML since it is more dynamic and code flow and
functions can be used to make the dictionary.
llvm-svn: 192646
This is implemented by means of a get_dynamic_setting(target, setting_name) function vended by the Python module, which can respond to arbitrary string names with dynamically constructed
settings objects (most likely, some of those that PythonDataObjects supports) for LLDB to parse
This needs to be hooked up to the debugger via some setting to allow users to specify which module will vend the information they want to supply
llvm-svn: 192628
Implement SBTarget::CreateValueFromAddress() with a behavior equivalent to SBValue::CreateValueFromAddress()
(but without the need to grab an SBValue first just as a starting point to make up another SBValue out of whole cloth)
llvm-svn: 192239
This allows the PC to be directly changed to a different line.
It's similar to the example python script in examples/python/jump.py, except implemented as a builtin.
Also this version will track the current function correctly even if the target line resolves to multiple addresses. (e.g. debugging a templated function)
llvm-svn: 190572
Summary:
This merge brings in the improved 'platform' command that knows how to
interface with remote machines; that is, query OS/kernel information, push
and pull files, run shell commands, etc... and implementation for the new
communication packets that back that interface, at least on Darwin based
operating systems via the POSIXPlatform class. Linux support is coming soon.
Verified the test suite runs cleanly on Linux (x86_64), build OK on Mac OS
X Mountain Lion.
Additional improvements (not in the source SVN branch 'lldb-platform-work'):
- cmake build scripts for lldb-platform
- cleanup test suite
- documentation stub for qPlatform_RunCommand
- use log class instead of printf() directly
- reverted work-in-progress-looking changes from test/types/TestAbstract.py that work towards running the test suite remotely.
- add new logging category 'platform'
Reviewers: Matt Kopec, Greg Clayton
Review: http://llvm-reviews.chandlerc.com/D1493
llvm-svn: 189295
There are two new classes:
lldb::SBModuleSpec
lldb::SBModuleSpecList
The SBModuleSpec wraps up a lldb_private::ModuleSpec, and SBModuleSpecList wraps up a lldb_private::ModuleSpecList.
llvm-svn: 185877
OS Plugins' __init__ method takes two arguments: (self,process)
I was erroneously passing the session_dict as well as part of my PyCallable changes and that caused plugins to fail to work
llvm-svn: 185240
The semi-unofficial way of returning a status from a Python command was to return a string (e.g. return "no such variable was found") that LLDB would pick as a clue of an error having happened
This checkin changes that:
- SBCommandReturnObject now exports a SetError() call, which can take an SBError or a plain C-string
- script commands now drop any return value and expect the SBCommandReturnObject ("return object") to be filled in appropriately - if you do nothing, a success will be assumed
If your commands were relying on returning a value and having LLDB pick that up as an error, please change your commands to SetError() through the return object or expect changes in behavior
llvm-svn: 184893
Now, the way SWIG wrappers call into Python is through a utility PyCallable object, which overloads operator () to look like a normal function call
Plus, using the SBTypeToSWIGWrapper() family of functions, we can call python functions transparently as if they were plain C functions
Using this new technique should make adding new Python call points easier and quicker
The PyCallable is a generally useful facility, and we might want to consider moving it to a separate layer where other parts of LLDB can use it
llvm-svn: 184608
Any time a SWIG wrapper needs a PyObject for an SB object, it now should call into SBTypeToSWIGWrapper<SBType>(SBType*)
If you try to use it on an SBType for which there is not an implementation yet, LLDB will fail to link - just add your specialization to python-swigsafecast.swig and rebuild
This is the first step in simplifying our SWIG Wrapper layer
llvm-svn: 184580
Specifically, the ${target ${process ${thread and ${frame specifiers have been extended to allow a subkeyword .script:<fctName> (e.g. ${frame.script:FooFunction})
The functions are prototyped as
def FooFunction(Object,unused)
where object is of the respective SB-type (SBTarget for target.script, ... and so on)
This has not been implemented for ${var because it would be akin to a Python summary which is already well-defined in LLDB
llvm-svn: 184500
The script was able to point out and save 40 bytes in each lldb_private::Section by being very careful where we need to have virtual destructors and also by re-ordering members.
llvm-svn: 184364
@lldb.command("new_command", "Documentation string for new_command...")
def new_command(debugger, command, result, dict):
....
No more need to register your command in the __lldb_init_module function!
llvm-svn: 184274
//------------------------------------------------------------------
/// Get all types matching \a type_mask from debug info in this
/// module.
///
/// @param[in] type_mask
/// A bitfield that consists of one or more bits logically OR'ed
/// together from the lldb::TypeClass enumeration. This allows
/// you to request only structure types, or only class, struct
/// and union types. Passing in lldb::eTypeClassAny will return
/// all types found in the debug information for this module.
///
/// @return
/// A list of types in this module that match \a type_mask
//------------------------------------------------------------------
lldb::SBTypeList
SBModule::GetTypes (uint32_t type_mask)
//------------------------------------------------------------------
/// Get all types matching \a type_mask from debug info in this
/// compile unit.
///
/// @param[in] type_mask
/// A bitfield that consists of one or more bits logically OR'ed
/// together from the lldb::TypeClass enumeration. This allows
/// you to request only structure types, or only class, struct
/// and union types. Passing in lldb::eTypeClassAny will return
/// all types found in the debug information for this compile
/// unit.
///
/// @return
/// A list of types in this compile unit that match \a type_mask
//------------------------------------------------------------------
lldb::SBTypeList
SBCompileUnit::GetTypes (uint32_t type_mask = lldb::eTypeClassAny);
This lets you request types by filling out a mask that contains one or more bits from the lldb::TypeClass enumerations, so you can only get the types you really want.
llvm-svn: 184251
- exposing new accessors: formats/format, ..., that allow you to iterate over all formatters
e.g. sys_category = lldb.debugger.GetCategory("system").summary['char *']
- ensuring that C++-based synthetic children provider can at least print their description accurately, if nothing else
llvm-svn: 183805
Providing a Python helper SBData.CreateDataFromInt() to make an SBData out of a single integer number
It tries to use the current target, if any, for endianness and pointer size, and it picks a reasonable size on your behalf - if there is no way it can infer anything reasonable it essentially picks a 64-bit Mac as the reference model
llvm-svn: 183793
Allowing LLDB to resolve names of Python functions when they are located in classes
This allows things like *bound* classmethods to be used for formatters, commands, ...
llvm-svn: 183772
Upon encountering an object not of type string, LLDB will get the string representation of it (akin to calling str(X) in Python code) and use that as the summary to display
Feedback is welcome as to whether repr() should be used instead (but the argument for repr() better be highly persuasive :-)
llvm-svn: 182953
Python breakpoint actions can return False to say that they don't want to stop at the breakpoint to which they are associated
Almost all of the work to support this notion of a breakpoint callback was in place, but two small moving parts were missing:
a) the SWIG wrapper was not checking the return value of the script
b) when passing a Python function by name, the call statement was dropping the return value of the function
This checkin addresses both concerns and makes this work
Care has been taken that you only keep running when an actual value of False has been returned, and that any other value (None included) means Stop!
llvm-svn: 181866
SWIG is smart enough to recognize that C++ operators == and != mean __eq__ and __ne__ in Python and do the appropriate translation
But it is not smart enough to recognize that mySBObject == None should return False instead of erroring out
The %pythoncode blocks are meant to provide those extra smarts (and they play some SWIG&Python magic to find the right function to call behind the scenes with no risk of typos :-)
Lastly, SBBreakpoint provides an == but never provided a != operator - common courtesy is to provide both
llvm-svn: 180987
finish-swig-Python-LLDB.sh to create a new lldb.diagnose subdirectory
in the LLDB framework; the first diagnostic command in this directory
is diagnose-unwind. There may be others added in the future.
Users can load these diagnostic tools into their session with
"script import lldb.diagnose".
llvm-svn: 180768
Introducing a negative cache for ObjCLanguageRuntime::LookupInCompleteClassCache()
This helps speed up the (common) case of us looking for classes that are hidden deep within Cocoa internals and repeatedly failing at finding type information for them.
In order for this to work, we need to clean this cache whenever debug information is added. A new symbols loaded event is added that is triggered with add-dsym (before modules loaded would be triggered for both adding modules and adding symbols).
Interested parties can register for this event. Internally, we make sure to clean the negative cache whenever symbols are added.
Lastly, ClassDescriptor::IsTagged() has been refactored to GetTaggedPointerInfo() that also (optionally) returns info and value bits. In this way, data formatters can share tagged pointer code instead of duplicating the required arithmetic.
llvm-svn: 178897
Making value objects properly iterable in constructs of the form
[ x for x in value_with_children ]
This would previously cause an endless loop because lacking a proper iterator object, Python will keep calling __getitem__() with increasing values of the index until it gets an IndexError
since SBValue::GetValueForExpressionPath() supports synthetic array members, no array index will ever really cause an IndexError to be raised, hence the endless iteration
class value_iter is an implementation of __iter__() that provides a terminating iterator over a value
llvm-svn: 177885
It is replaced by a Print("str") call which is equivalent to Printf("%s","str")
- Providing file-like behavior for SBStream with appropriate extension write() and flush() calls, plus documenting that these are only meant and only exist for Python
Documenting the file-like behavior on our website
llvm-svn: 177877
Exports write() and flush() from SBCommandReturnObject to enable file-like output from Python commands.
e.g.:
def ls(debugger, command, result, internal_dict):
print >>result,”just “some output”
will produce
(lldb) ls
just “some output
(lldb)
llvm-svn: 177807
"compile_units" returns an array of all compile units in a module as a list() of lldb.SBCompileUnit objects.
"compile_unit" returns a compile unit accessor object that allows indexed access, search by full or partial path, or by regex:
(lldb) script
comp_unit = lldb.target.module['TextEdit'].compile_unit['Document.m']
comp_unit = lldb.target.module['TextEdit'].compile_unit['/path/to/Document.m']
comp_unit = lldb.target.module['TextEdit'].compile_unit[0]
comp_unit = lldb.target.module['TextEdit'].compile_unit[1]
for comp_unit in lldb.target.module['TextEdit'].compile_unit[re.compile("\.m$")]
print comp_unit
This helps do quick searches and scripting while debugging.
llvm-svn: 176613
Calculate "can branch" using the MC API's rather than our hand-rolled regex'es.
As extra credit, allow setting the disassembly flavor for x86 based architectures to intel or att.
<rdar://problem/11319574>
<rdar://problem/9329275>
llvm-svn: 176392
hitting auto-continue signals while running a thread plan would cause us to lose control of the debug
session.
<rdar://problem/12993641>
llvm-svn: 174793
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
Added the ability for OS plug-ins to lazily populate the thread this. The python OS plug-in classes can now implement the following method:
class OperatingSystemPlugin:
def create_thread(self, tid, context):
# Return a dictionary for a new thread to create it on demand
This will add a new thread to the thread list if it doesn't already exist. The example code in lldb/examples/python/operating_system.py has been updated to show how this call us used.
Cleaned up the code in PythonDataObjects.cpp/h:
- renamed all classes that started with PythonData* to be Python*.
- renamed PythonArray to PythonList. Cleaned up the code to use inheritance where
- Centralized the code that does ref counting in the PythonObject class to a single function.
- Made the "bool PythonObject::Reset(PyObject *)" function be virtual so each subclass can correctly check to ensure a PyObject is of the right type before adopting the object.
- Cleaned up all APIs and added new constructors for the Python* classes to they can all construct form:
- PyObject *
- const PythonObject &
- const lldb::ScriptInterpreterObjectSP &
Cleaned up code in ScriptInterpreterPython:
- Made calling python functions safer by templatizing the production of value formats. Python specifies the value formats based on built in C types (long, long long, etc), and code often uses typedefs for uint32_t, uint64_t, etc when passing arguments down to python. We will now always produce correct value formats as the templatized code will "do the right thing" all the time.
- Fixed issues with the ScriptInterpreterPython::Locker where entering the session and leaving the session had a bunch of issues that could cause the "lldb" module globals lldb.debugger, lldb.target, lldb.process, lldb.thread, and lldb.frame to not be initialized.
llvm-svn: 172873
Adding FindFirstGlobalVariable to SBModule and SBTarget
These calls work like FindGlobalVariables but they only return the first match found and so they can return an SBValue instead of an SBValueList for added convenience of use
llvm-svn: 172636
Added a unique integer identifier to processes. Some systems, like JTAG or other simulators, might always assign the same process ID (pid) to the processes that are being debugged. In order for scripts and the APIs to uniquely identify the processes, there needs to be another ID. Now the SBProcess class has:
uint32_t SBProcess::GetUniqueID();
This integer ID will help to truly uniquely identify a process and help with appropriate caching that can be associated with a SBProcess object.
llvm-svn: 172628
controlled by the --unwind-on-error flag, and --ignore-breakpoint which separately controls behavior when a called
function hits a breakpoint. For breakpoints, we don't unwind, we either stop, or ignore the breakpoint, which makes
more sense.
Also make both these behaviors globally settable through "settings set".
Also handle the case where a breakpoint command calls code that ends up re-hitting the breakpoint. We were recursing
and crashing. Now we just stop without calling the second command.
<rdar://problem/12986644>
<rdar://problem/9119325>
llvm-svn: 172503
Added SBTarget::EvaluateExpression() so expressions can be evaluated without needing a process.
Also fixed many functions that deal with clang AST types to be able to properly handle the clang::Type::Elaborated types ("struct foo", "class bar").
llvm-svn: 171476
Added a "step-in-target" flag to "thread step-in" so if you have something like:
Process 28464 stopped
* thread #1: tid = 0x1c03, function: main , stop reason = breakpoint 1.1
frame #0: 0x0000000100000e08 a.out`main at main.c:62
61
-> 62 int A6 = complex (a(4), b(5), c(6)); // Stop here to step targetting b and hitting breakpoint.
63
and you want to get into "complex" skipping a, b and c, you can do:
(lldb) step -t complex
Process 28464 stopped
* thread #1: tid = 0x1c03, function: complex , stop reason = step in
frame #0: 0x0000000100000d0d a.out`complex at main.c:44
41
42 int complex (int first, int second, int third)
43 {
-> 44 return first + second + third; // Step in targetting complex should stop here
45 }
46
47 int main (int argc, char const *argv[])
llvm-svn: 170008
lldb.target
lldb.process
lldb.thread
lldb.frame
are initialized to at least contain empty lldb classes in case some python gets imported that uses them.
llvm-svn: 169750
Add the ability to get a symbol or symbols by name and type from a SBModule, and also the ability to get all symbols by name and type from SBTarget objects.
llvm-svn: 169205
There should be no functional changes as SBData creation functions already checked for NULL regardless of size - but it ensures consistency
llvm-svn: 166978
This commit enables the new HasChildren() feature for synthetic children providers
Namely, it hooks up the required bits and pieces so that individual synthetic children providers can implement a new (optional) has_children call
Default implementations have been provided where necessary so that any existing providers continue to work and behave correctly
Next steps are:
2) writing smart implementations of has_children for our providers whenever possible
3) make a test case
llvm-svn: 166495
Added a new API call to help efficiently determine if a SBValue could have children:
bool
SBValue::MightHaveChildren ();
This is inteneded to be used bui GUI programs that need to show if a SBValue needs a disclosure triangle when displaying a hierarchical type in a tree view without having to complete the type (by calling SBValue::GetNumChildren()) as completing the type is expensive.
llvm-svn: 166460
Given our implementation of ValueObjects we could have a scenario where a ValueObject has a dynamic type of Foo* at one point, and then its dynamic type changes to Bar*
If Bar* has synthetic children enabled, by the time we figure that out, our public API is already vending SBValues wrapping a DynamicVO, instead of a SyntheticVO and there was
no trivial way for us to change the SP inside an SBValue on the fly
This checkin reimplements SBValue in terms of a wrapper, ValueImpl, that allows this substitutions on-the-fly by overriding GetSP() to do The Right Thing (TM)
As an additional bonus, GetNonSyntheticValue() now works, and we can get rid of the ForceDisableSyntheticChildren idiom in ScriptInterpreterPython
Lastly, this checkin makes sure the synthetic VOs get the correct m_value and m_data from their parents (prevented summaries from working in some cases)
llvm-svn: 166426
Then make the Thread a Broadcaster, and get it to broadcast when the selected frame is changed (but only from the Command Line) and when Thread::ReturnFromFrame
changes the stack.
Made the Driver use this notification to print the new thread status rather than doing it in the command.
Fixed a few places where people were setting their broadcaster class by hand rather than using the static broadcaster class call.
<rdar://problem/12383087>
llvm-svn: 165640
starting lldb I get
% ./lldb -x
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "/private/tmp/build/Debug/LLDB.framework/Versions/A/Resources/Python/lldb/__init__.py", line 9008
raise TypeError("No array item of type %s" % str(type(key)))
^
SyntaxError: invalid syntax
Traceback (most recent call last):
File "<string>", line 1, in <module>
NameError: name 'run_one_line' is not defined
Traceback (most recent call last):
File "<string>", line 1, in <module>
NameError: name 'run_one_line' is not defined
Traceback (most recent call last):
File "<string>", line 1, in <module>
NameError: name 'run_one_line' is not defined
(lldb)
I did a clean build and still got the problem so I'm backing this out until Enrico can
look at it.
llvm-svn: 165356
This checkin adds the capability for LLDB to load plugins from external dylibs that can provide new commands
It exports an SBCommand class from the public API layer, and a new SBCommandPluginInterface
There is a minimal load-only plugin manager built into the debugger, which can be accessed via Debugger::LoadPlugin.
Plugins are loaded from two locations at debugger startup (LLDB.framework/Resources/PlugIns and ~/Library/Application Support/LLDB/PlugIns) and more can be (re)loaded via the "plugin load" command
For an example of how to make a plugin, refer to the fooplugin.cpp file in examples/plugins/commands
Caveats:
Currently, the new API objects and features are not exposed via Python.
The new commands can only be "parsed" (i.e. not raw) and get their command line via a char** parameter (we do not expose our internal Args object)
There is no unloading feature, which can potentially lead to leaks if you overwrite the commands by reloading the same or different plugins
There is no API exposed for option parsing, which means you may need to use getopt or roll-your-own
llvm-svn: 164865
This may (but shouldn't) break Linux (but I tested and it still worked on FreeBSD).
The same shell scripts are now used on Xcode and Makefiles, for generating
the SWIG bindings.
Some compatibility fixes were applied, too (python path, bash-isms, etc).
llvm-svn: 163912
- Tweaked a parameter name in SBDebugger.h so my typemap will catch it;
- Added a SBDebugger.Create(bool, callback, baton) to the swig interface;
- Added SBDebugger.SetLoggingCallback to the swig interface;
- Added a callback utility function for log callbacks;
- Guard against Py_None on both callback utility functions;
- Added a FIXME to the SBDebugger API test;
- Added a __del__() stub for SBDebugger.
We need to be able to get both the log callback and baton from an
SBDebugger if we want to protect against memory leaks (or make the user
responsible for holding another reference to the callback).
Additionally, it's impossible to revert from a callback-backed log
mechanism to a file-backed log mechanism.
llvm-svn: 162633
Now it's possible to use SBInputReader callbacks in Python.
We leak the callback object, unfortunately. A __del__ method can be added
to SBInputReader, but we have no way to check the callback function that
is on the reader. So we can't call Py_DECREF on it when we have our
PythonCallback function. One way to do it is to assume that reified
SBInputReaders always have a Python callback (and always call Py_DECREF).
Another one is to add methods or properties to SBInputReader (or make the
m_callback_function property public).
llvm-svn: 162356
Added new API to lldb::SBTypeMember for bitfields:
bool SBTypeMember::IsBitfield();
uint32_t SBTypeMember::GetBitfieldSizeInBits();
Also added new properties for easy access. Now SBTypeMember objects in python have a "fields" property for all type fields, "bases" for all direct bases, "vbases" for all virtual base classes and "members" for a combo of all three organized by bit offset. They all return a python list() of SBTypeMember objects. Usage:
(lldb) script
>>> t = lldb.target.FindFirstType("my_type")
>>> for field in t.fields:
... print field
>>> for vbase in t.vbases:
... print vbase
>>> for base in t.bases:
... print base
>>> for member in t.members:
... print member
Also added new "is_bitfield" property to the SBTypeMember objects that will return the result of SBTypeMember::IsBitfield(), and "bitfield_bit_size" which will return the result of SBTypeMember::GetBitfieldSizeInBits();
I also fixed "SBTypeMember::GetOffsetInBytes()" to return the correct byte offset.
llvm-svn: 161091
Convert from calling Halt in the lldb Driver.cpp's input reader's sigint handler to sending this AsyncInterrupt so it can be handled in the
event loop.
If you are attaching and get an async interrupt, abort the attach attempt.
Also remember to destroy the process if get interrupted while attaching.
Getting this to work also required handing the eBroadcastBitInterrupt in a few more places in Process WaitForEvent & friends.
<rdar://problem/10792425>
llvm-svn: 160903
Execute which was never going to get run and another ExecuteRawCommandString. Took the knowledge of how
to prepare raw & parsed commands out of CommandInterpreter and put it in CommandObject where it belongs.
Also took all the cases where there were the subcommands of Multiword commands declared in the .h file for
the overall command and moved them into the .cpp file.
Made the CommandObject flags work for raw as well as parsed commands.
Made "expr" use the flags so that it requires you to be paused to run "expr".
llvm-svn: 158235
Refactorings of watchpoint creation APIs so that SBTarget::WatchAddress(), SBValue::Watch(), and SBValue::WatchPointee()
now take an additional 'SBError &error' parameter (at the end) to contain the reason if there is some failure in the
operation. Update 'watchpoint set variable/expression' commands to take advantage of that.
Update existing test cases to reflect the API change and add test cases to verify that the SBError mechanism works for
SBTarget::WatchAddress() by passing an invalid watch_size.
llvm-svn: 157964
Also changed the defaults for SBThread::Step* to not delete extant plans.
Also added some test cases to test more complex stepping scenarios.
llvm-svn: 156667
Switch over to the "*-apple-macosx" for desktop and "*-apple-ios" for iOS triples.
Also make the selection process for auto selecting platforms based off of an arch much better.
llvm-svn: 156354
Cleaned up the lldb.utils.symbolication, lldb.macosx.heap and lldb.macosx.crashlog. The lldb.macosx.heap can now build a dylib for the current triple into a temp directory and use it from there.
llvm-svn: 155577