Rationale:
Although file I/O is a bit alien to MLIR itself, we provide two convenient ways
for sparse tensor I/O. The input part was already there (behind the swiss army
knife sparse_tensor.new). Now we have a sparse_tensor.out to write out data. As
before, the ops are kept vague and may change in the future. For now this
allows us to compare TACO vs MLIR very easily.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D117850
This guarantees the preconditions of fromCOO; whereas prior to this, one could call the constructor directly with an unsorted tensor, which would cause fromCOO to misbehave.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D117167
Depends On D115008
This change opens the way for D115012, and removes some corner cases in `CodegenUtils.cpp`. The `SparseTensorAttrDefs.td` already specifies that we allow `0` bitwidth for the two overhead types and that it is interpreted to mean the architecture's native width.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D115010
By default, the listeners do nothing unless linked in.
This revision allows the "Perf" and "Intel" Jit event listeners to be used.
The "OProfile" event listener is not enabled at this time,
the associated library structure is not well-isolated.
Differential Revision: https://reviews.llvm.org/D116552
data point using the 3-dim tensor nell-2.tns
MLIR:
READ FILE INTO COO: 24424.369294 ms ---> improves to ----> 9638.501044 ms
SORT COO BEFORE PACK: 762.834831 ms
PACK COO TO TENSOR: 1243.376245 ms
TACO:
b file read: 13270.9 ms
b pack: 7137.74 ms
b size: (12092 x 9184 x 28818), 925300328 bytes
https://github.com/llvm/llvm-project/issues/52679
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D115696
Add convertFromMLIRSparseTensor to the supporting C shared library to convert
SparseTensorStorage to COO-flavor format.
Add Python routine sparse_tensor_to_coo_tensor to convert sparse tensor storage
pointer to numpy values for COO-flavor format tensor.
Add a Python test for sparse tensor output.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D115557
This revision implements sparse outputs (from scratch) in all cases where
the loops can be reordered with all but one parallel loops outer. If the
inner parallel loop appears inside one or more reductions loops, then an
access pattern expansion is required (aka. workspaces in TACO speak).
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D115091
The purpose of the change is to make clear whether the user is
retrieving the original function or the wrapper function, in line with
the invoke commands. This new functionality is useful for users that
already have defined their own packed interface, so they do not want the
extra layer of indirection, or for users wanting to the look at the
resulting primary function rather than the wrapper function.
All locations, except the python bindings now have a `lookupPacked`
method that matches the original `lookup` functionality. `lookup`
still exists, but with new semantics.
- `lookup` returns the function with a given name. If `bool f(int,int)`
is compiled, `lookup` will return a reference to `bool(*f)(int,int)`.
- `lookupPacked` returns the packed wrapper of the function with the
given name. If `bool f(int,int)` is compiled, `lookupPacked` will return
`void(*mlir_f)(void**)`.
Differential Revision: https://reviews.llvm.org/D114352
- Move the #define s to the GPU Transform library from GPU Ops so that
SerializeToHsaco is non-trivially compiled
- Add required includes to SerializeToHsaco
- Move MCSubtargetInfo creation to the correct point in the
compilation process
- Change mlir in ROCM tests to account for renamed/moved ops
Differential Revision: https://reviews.llvm.org/D114184
Compiling code for AMD GPUs requires knowledge of which chipset is
being targeted, especially if the code uses chipset-specific
intrinsics (which is the case in a downstream convolution generator).
This commit adds `target`, `chipset` and `features` arguments to the
SerializeToHsaco constructor to enable passing in this required
information.
It also amends the ROCm integration tests to pass in the target
chipset, which is set to the chipset of the first GPU on the system
executing the tests.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D114107
First version was vectors only. With some clever "path" insertion,
we now support any d-dimensional tensor. Up next: reductions too
Reviewed By: bixia, wrengr
Differential Revision: https://reviews.llvm.org/D114024
This revision contains all "sparsification" ops and rewriting necessary to support sparse output tensors when the kernel has no reduction (viz. insertions occur in lexicographic order and are "injective"). This will be later generalized to allow reductions too. Also, this first revision only supports sparse 1-d tensors (viz. vectors) as output in the runtime support library. This will be generalized to n-d tensors shortly. But this way, the revision is kept to a manageable size.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D113705
The current implementation used explicit index->int64_t casts for some, but
not all instances of passing values of type "index" in and from the sparse
support library. This revision makes the situation more consistent by
using new "index_t" type at all such places (which allows for less trivial
casting in the generated MLIR code). Note that the current revision still
assumes that "index" is 64-bit wide. If we want to support targets with
alternative "index" bit widths, we need to build the support library different.
But the current revision is a step forward by making this requirement explicit
and more visible.
Reviewed By: wrengr
Differential Revision: https://reviews.llvm.org/D112122
Next step towards supporting sparse tensors outputs.
Also some minor refactoring of enum constants as well
as replacing tensor arguments with proper buffer arguments
(latter is required for more general sizes arguments for
the sparse_tensor.init operation, as well as more general
spares_tensor.convert operations later)
Reviewed By: wrengr
Differential Revision: https://reviews.llvm.org/D111771
Some random changes that were hanging around in my workspace. Also,
a tiny step towards creating a header file for the sparse utils lib.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D111589
This moves the registry higher in the LLVM library dependency stack.
Every client of the target registry needs to link against MC anyway to
actually use the target, so we might as well move this out of Support.
This allows us to ensure that Support doesn't have includes from MC/*.
Differential Revision: https://reviews.llvm.org/D111454
When generating code to add an element to SparseTensorCOO (e.g., when doing dense=>sparse conversion), we used to check for nonzero values on the runtime side, whereas now we generate MLIR code to do that check.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D110121
This revision removes the ad-hoc MemRefs that were needed using the old
ABI (when we still passed by value) and replaces them with the shared
StridedMemRef definitions of CRunnerUtils (possible now that we pass by
pointer). This avoids code duplication and makes sure we have a consistent
view of strided memory references in all our support libraries.
Reviewed By: jsetoain
Differential Revision: https://reviews.llvm.org/D110221
This change adds automatic wrapper functoins with emit_c_interface
to all methods in the sparse support library that deal with MEMREFs.
The wrappers will take care of passing MEMREFs by value internally
and by pointer externally, thereby avoiding ABI issues across platforms.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D110219
We are having issues running the integration test of the sparse compiler
on AArch64 (crashing in the lib). This revision adds more assertions.
Reviewed By: jsetoain
Differential Revision: https://reviews.llvm.org/D109861