Commit Graph

6 Commits

Author SHA1 Message Date
Stanislav Funiak 2692eae574 [MLIR][PDL] Refactor the positions for multi-root patterns.
When the original version of multi-root patterns was reviewed, several improvements were made to the pdl_interp operations during the review process. Specifically, the "get users of a value at the specified operand index" was split up into "get users" and "compare the users' operands with that value". The iterative execution was also cleaned up to `pdl_interp.foreach`. However, the positions in the pdl-to-pdl_interp lowering were not similarly refactored. This introduced several problems, including hard-to-detect bugs in the lowering and duplicate evaluation of `pdl_interp.get_users`.

This diff cleans up the positions. The "upward" `OperationPosition` was split-out into `UsersPosition` and `ForEachPosition`, and the operand comparison was replaced with a simple predicate. In the process, I fixed three bugs:
1. When multiple roots were had the same connector (i.e., a node that they shared with a subtree at the previously visited root), we would generate a single foreach loop rather than one foreach loop for each such root. The reason for this is that such connectors shared the position. The solution for this is to add root index as an id to the newly introduced `ForEachPosition`.
2. Previously, we would use `pdl_interp.get_operands` indiscriminately, whether or not the operand was variadic. We now correctly detect variadic operands and insert `pdl_interp.get_operand` when needed.
3. In certain corner cases, we would trigger the "connector has not been traversed yet" assertion. This was caused by not inserting the values during the upward traversal correctly. This has now been fixed.

Reviewed By: Mogball

Differential Revision: https://reviews.llvm.org/D116080
2022-01-04 08:03:44 +05:30
Mehdi Amini e5639b3fa4 Fix more clang-tidy cleanups in mlir/ (NFC) 2021-12-22 20:53:11 +00:00
River Riddle 233e9476d8 [mlir:PDL] Allow non-bound pdl.attribute/pdl.type operations that create constants
This allows for passing in these attributes/types to constraints/rewrites as arguments.

Differential Revision: https://reviews.llvm.org/D114817
2021-12-10 19:38:43 +00:00
Benjamin Kramer 8521850f20 Provide a definition for OperationPosition::kDown
This isn't necessary in C++17, but C++14 still requires it.
2021-11-26 14:11:59 +01:00
River Riddle 3a833a0e0e [mlir][PDL] Add support for variadic operands and results in the PDL Interpreter
This revision extends the PDL Interpreter dialect to add support for variadic operands and results, with ranges of these values represented via the recently added !pdl.range type. To support this extension, three new operations have been added that closely match the single variant:
* pdl_interp.check_types : Compare a range of types with a known range.
* pdl_interp.create_types : Create a constant range of types.
* pdl_interp.get_operands : Get a range of operands from an operation.
* pdl_interp.get_results : Get a range of results from an operation.
* pdl_interp.switch_types : Switch on a range of types.

This revision handles adding support in the interpreter dialect and the conversion from PDL to PDLInterp. Support for variadic operands and results in the bytecode will be added in a followup revision.

Differential Revision: https://reviews.llvm.org/D95722
2021-03-16 13:20:19 -07:00
River Riddle 8a1ca2cd34 [mlir] Add a conversion pass between PDL and the PDL Interpreter Dialect
The conversion between PDL and the interpreter is split into several different parts.
** The Matcher:

The matching section of all incoming pdl.pattern operations is converted into a predicate tree and merged. Each pattern is first converted into an ordered list of predicates starting from the root operation. A predicate is composed of three distinct parts:
* Position
  - A position refers to a specific location on the input DAG, i.e. an
    existing MLIR entity being matched. These can be attributes, operands,
    operations, results, and types. Each position also defines a relation to
    its parent. For example, the operand `[0] -> 1` has a parent operation
    position `[0]` (the root).
* Question
  - A question refers to a query on a specific positional value. For
  example, an operation name question checks the name of an operation
  position.
* Answer
  - An answer is the expected result of a question. For example, when
  matching an operation with the name "foo.op". The question would be an
  operation name question, with an expected answer of "foo.op".

After the predicate lists have been created and ordered(based on occurrence of common predicates and other factors), they are formed into a tree of nodes that represent the branching flow of a pattern match. This structure allows for efficient construction and merging of the input patterns. There are currently only 4 simple nodes in the tree:
* ExitNode: Represents the termination of a match
* SuccessNode: Represents a successful match of a specific pattern
* BoolNode/SwitchNode: Branch to a specific child node based on the expected answer to a predicate question.

Once the matcher tree has been generated, this tree is walked to generate the corresponding interpreter operations.

 ** The Rewriter:
The rewriter portion of a pattern is generated in a very straightforward manor, similarly to lowerings in other dialects. Each PDL operation that may exist within a rewrite has a mapping into the interpreter dialect. The code for the rewriter is generated within a FuncOp, that is invoked by the interpreter on a successful pattern match. Referenced values defined in the matcher become inputs the generated rewriter function.

An example lowering is shown below:

```mlir
// The following high level PDL pattern:
pdl.pattern : benefit(1) {
  %resultType = pdl.type
  %inputOperand = pdl.input
  %root, %results = pdl.operation "foo.op"(%inputOperand) -> %resultType
  pdl.rewrite %root {
    pdl.replace %root with (%inputOperand)
  }
}

// is lowered to the following:
module {
  // The matcher function takes the root operation as an input.
  func @matcher(%arg0: !pdl.operation) {
    pdl_interp.check_operation_name of %arg0 is "foo.op" -> ^bb2, ^bb1
  ^bb1:
    pdl_interp.return
  ^bb2:
    pdl_interp.check_operand_count of %arg0 is 1 -> ^bb3, ^bb1
  ^bb3:
    pdl_interp.check_result_count of %arg0 is 1 -> ^bb4, ^bb1
  ^bb4:
    %0 = pdl_interp.get_operand 0 of %arg0
    pdl_interp.is_not_null %0 : !pdl.value -> ^bb5, ^bb1
  ^bb5:
    %1 = pdl_interp.get_result 0 of %arg0
    pdl_interp.is_not_null %1 : !pdl.value -> ^bb6, ^bb1
  ^bb6:
    // This operation corresponds to a successful pattern match.
    pdl_interp.record_match @rewriters::@rewriter(%0, %arg0 : !pdl.value, !pdl.operation) : benefit(1), loc([%arg0]), root("foo.op") -> ^bb1
  }
  module @rewriters {
    // The inputs to the rewriter from the matcher are passed as arguments.
    func @rewriter(%arg0: !pdl.value, %arg1: !pdl.operation) {
      pdl_interp.replace %arg1 with(%arg0)
      pdl_interp.return
    }
  }
}
```

Differential Revision: https://reviews.llvm.org/D84580
2020-10-26 18:01:06 -07:00