The implementation supports static schedule for Fortran do loops. This
implements the dynamic variant of the same concept.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D97393
ArmSVE dialect is behind the recent changes in how the Vector dialect
interacts with backend vector dialects and the MLIR -> LLVM IR
translation module. This patch cleans up ArmSVE initialization within
Vector and removes the need for an LLVMArmSVE dialect.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D100171
When Linalg named ops support was added, captures were omitted
from the body builder. This revision adds support for captures
which allows us to write FillOp in a more idiomatic fashion using
the _linalg_ops_ext mixin support.
This raises an issue in the generation of `_linalg_ops_gen.py` where
```
@property
def result(self):
return self.operation.results[0] if len(self.operation.results) > 1 else None
```.
The condition should be `== 1`.
This will be fixed in a separate commit.
Differential Revision: https://reviews.llvm.org/D100363
This offers the ability to pass numpy arrays to the corresponding
memref argument.
Reviewed By: mehdi_amini, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D100077
This allows for walking all nested locations of a given location, and is generally useful when processing locations.
Differential Revision: https://reviews.llvm.org/D100437
In the long run, we want to unify the dot product codegen solutions between
all target architectures, but this intrinsic enables experimenting with AVX
specific implementations in the meantime.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D100593
We were using llvm::nulls, but that isn't thread safe so we switch to giving each thread it's own null stream.
Differential Revision: https://reviews.llvm.org/D100578
This matches the current support provided to operations, and allows attaching traits, interfaces, and using the DeclareInterfaceMethods utility. This was missed when attribute/type generation was first added.
Differential Revision: https://reviews.llvm.org/D100233
Rationale:
Now that vector<?xindex> is allowed, the restriction on vectorization
of index types in the sparse compiler can be removed. Also needs
generalization of scatter/gather index types.
Reviewed By: gysit
Differential Revision: https://reviews.llvm.org/D100522
This is useful for expressing specific table-gen options, like selecting
a particular dialect to print.
Use it to fix the documentation for the `pdl_interp` dialect which is now
generating the first dialect it finds in its input which is `pdl`.
Differential Revision: https://reviews.llvm.org/D100517
We are able to config the reducer pass pipeline through command-line.
Reviewed By: jpienaar, rriddle
Differential Revision: https://reviews.llvm.org/D100155
Add iterator for ReductionNode traversal and use range to indicate the
region we would like to keep. Refactor the interaction between
Pass/Tester/ReductionNode.
Now it'll be easier to add new traversal type and OpReducer
Reviewed By: jpienaar, rriddle
Differential Revision: https://reviews.llvm.org/D99713
This reverts commit a32846b1d0.
The build is broken with -DBUILD_SHARED_LIBS=ON:
tools/mlir/lib/Reducer/CMakeFiles/obj.MLIRReduce.dir/Tester.cpp.o: In function `mlir::Tester::isInteresting(mlir::ModuleOp) const':
Tester.cpp:(.text._ZNK4mlir6Tester13isInterestingENS_8ModuleOpE+0xa8): undefined reference to `mlir::OpPrintingFlags::OpPrintingFlags()'
Tester.cpp:(.text._ZNK4mlir6Tester13isInterestingENS_8ModuleOpE+0xc6): undefined reference to `mlir::Operation::print(llvm::raw_ostream&, mlir::OpPrintingFlags)'
Add iterator for ReductionNode traversal and use range to indicate the region we would like to keep. Refactor the interaction between Pass/Tester/ReductionNode.
Now it'll be easier to add new traversal type and OpReducer
Reviewed By: jpienaar, rriddle
Differential Revision: https://reviews.llvm.org/D99713
This allows custom types and attribute to parse a dimension list that
isn't necessarily terminated with `xtype`, for example something like:
#tf.shape<4x5>
Differential Revision: https://reviews.llvm.org/D100432
This patch collects operations that have users in a for loop and uses
them when loop invariant operations are detected and hoisted.
Reviewed By: bondhugula, vinayaka-polymage
Differential Revision: https://reviews.llvm.org/D99761
Handles lowering conv2d to linalg's convolution operator. This implementation
only supports floating point values but handles all strides, dilations, and
padding values.
Differential Revision: https://reviews.llvm.org/D100061
Per the SPIR-V spec "2.16.2. Validation Rules for Shader Capabilities":
Composite objects in the StorageBuffer, PhysicalStorageBuffer,
Uniform, and PushConstant Storage Classes must be explicitly
laid out.
For other cases we don't need to attach the struct offsets.
Reviewed By: hanchung
Differential Revision: https://reviews.llvm.org/D100386
The patch updates the tiling pass to add the tile offsets to the indices returned by the linalg operations.
Differential Revision: https://reviews.llvm.org/D100379
The patch extends the linalg to loop lowering pass to replace all linalg index operations by the induction variables of the generated loop nests.
Differential Revision: https://reviews.llvm.org/D100364
This patch introduces the neccessary infrastructure changes to implement
cost-modelling for detensoring. In particular, it introduces the
following changes:
- An extension to the dialect conversion framework to selectively
convert sub-set of non-entry BB arguments.
- An extension to branch conversion pattern to selectively convert
sub-set of a branche's operands.
- An interface for detensoring cost-modelling.
- 2 simple implementations of 2 different cost models.
This sets the stage to explose cost-modelling for detessoring in an
easier way. We still need to come up with better cost models.
Reviewed By: silvas
Differential Revision: https://reviews.llvm.org/D99945
Depends On D95311
Previous automatic-ref-counting pass worked with high level async operations (e.g. async.execute), however async values reference counting is a runtime implementation detail.
New pass mostly relies on the save liveness analysis to place drop_ref operations, and does better verification of CFG with different liveIn sets in block successors.
This is almost NFC change. No new reference counting ideas, just a cleanup of the previous version.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D95390
This is similar to the definition of llvm.switch, providing
unstructured branch-based control flow. It differs from the LLVM
operation in that it accepts any signless integer (not only an i32),
takes no branch weights (the same as the Branch and CondBranch ops),
and has a slightly different syntax for the default case that includes
it in the list of cases with an explicit `default` keyword.
Also included are several canonicalizers.
See https://llvm.discourse.group/t/rfc-add-std-switch-and-scf-switch/3090
Reviewed By: rriddle, bondhugula
Differential Revision: https://reviews.llvm.org/D99925
Since c42c67ad ('Re-apply "[lli] Make -jit-kind=orc the default JIT
engine"'), ORC is the default JIT. Unfortunately, ORC seems to
ignore the --entry-function flag, which breaks all tests that
use the flag, namely the AMX and X86Vector integration tests.
This has been reported in PR#49906
(https://bugs.llvm.org/show_bug.cgi?id=49906).
Work around this by explicitly selecting MCJIT.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D100344
The stride should be calculated with the converted array element
type, not the original input type.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D100337
These patterns have been used as a prerequisite step for lowering
to SPIR-V. But they don't involve SPIR-V dialect ops; they are
pure memref/vector op transformations. Given now we have a dedicated
MemRef dialect, moving them to Memref/Transforms/, which is a more
suitable place to host them, to allow used by others.
This commit just moves code around and renames patterns/passes
accordingly. CMakeLists.txt for existing MemRef libraries are
also improved along the way.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D100326
Symbols are now supported in the integer emptiness check. Remove some outdated assertions checking that there are no symbols.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D100327
This CL introduces a generic attribute (called "encoding") on tensors.
The attribute currently does not carry any concrete information, but the type
system already correctly determines that tensor<8xi1,123> != tensor<8xi1,321>.
The attribute will be given meaning through an interface in subsequent CLs.
See ongoing discussion on discourse:
[RFC] Introduce a sparse tensor type to core MLIR
https://llvm.discourse.group/t/rfc-introduce-a-sparse-tensor-type-to-core-mlir/2944
A sparse tensor will look something like this:
```
// named alias with all properties we hold dear:
#CSR = {
// individual named attributes
}
// actual sparse tensor type:
tensor<?x?xf64, #CSR>
```
I see the following rough 5 step plan going forward:
(1) introduce this format attribute in this CL, currently still empty
(2) introduce attribute interface that gives it "meaning", focused on sparse in first phase
(3) rewrite sparse compiler to use new type, remove linalg interface and "glue"
(4) teach passes to deal with new attribute, by rejecting/asserting on non-empty attribute as simplest solution, or doing meaningful rewrite in the longer run
(5) add FE support, document, test, publicize new features, extend "format" meaning to other domains if useful
Reviewed By: stellaraccident, bondhugula
Differential Revision: https://reviews.llvm.org/D99548
We will soon be adding non-AVX512 operations to MLIR, such as AVX's rsqrt. In https://reviews.llvm.org/D99818 several possibilities were discussed, namely to (1) add non-AVX512 ops to the AVX512 dialect, (2) add more dialects (e.g. AVX dialect for AVX rsqrt), and (3) expand the scope of the AVX512 to include these SIMD x86 ops, thereby renaming the dialect to something more accurate such as X86Vector.
Consensus was reached on option (3), which this patch implements.
Reviewed By: aartbik, ftynse, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D100119
Fusing a constant with a linalg.generic operation can result in the
fused operation being illegal since the loop bound computation
fails. Avoid such fusions.
Differential Revision: https://reviews.llvm.org/D100272
The `linalg.index` operation provides access to the iteration indexes of immediately enclosing linalg operations. It takes a dimension `dim` attribute and returns the iteration index in the given dimension. Having `linalg.index` allows us to unify `linalg.generic` and `linalg.indexed_generic` and also enables index access in named operations.
Differential Revision: https://reviews.llvm.org/D100292
This revision adds 2 helperr functions that help tie OpOperands and
BlockArguments in scf.ForOp without having to use the internal implementation
details.
Recent change enable dropping unit-trip loops of "reduction" iterator
type as well. This is fine as long as there is one other "reduction"
iterator in the operation. Without this the initialized value (value
of `out`) is not read which leads to a correctness issue.
Also fix a bug in the `fill` -> `tensor_reshape` folding. The `out`
operand of the `fill` needs to be reshaped to get the `out` operand of
the generated `fill` operation.
Differential Revision: https://reviews.llvm.org/D100145
Lowerings tosa.max_pool2d to linalg equivalent operations. Includes
adding max pooling operations for linalg, with corresponding tests.
Differential Revision: https://reviews.llvm.org/D99824
This patch doesn't support the optional operands of ImageDrefGather. The support of optional operands will be implemented later.
co-authered-by: Alan Liu <alanliu.yf@gmail.com>
Differential Revision: https://reviews.llvm.org/D100128
Dialects can be translated to LLVM IR when they have the
LLVMTranslationDialectInterface interface registered. In case the
interface isn't explicitly registered, even the LLVM dialect can't be
exported to LLVM IR. This make the error message more explicit on this.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D96729
This patch unconditionally converts i1 types to i8 types on memrefs. If the
extensions or capabilities are not met, they will be converted to i32. Hence the
logic in IntLoadPattern and IntStorePattern are also updated.
Also added the implementation of SPIRVTypeConverter::getOptions().
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D99724
Non-32-bit scalar types require special hardware support that may not
exist on all GPUs. This is reflected in SPIR-V as that non-32-bit scalar
types require special capabilities or extensions.
Previously when there is a non-32-bit type and no native support, we
unconditionally emulate it with 32-bit ones. This isn't good given that
it can have implications over ABI and data layout consistency.
This commit introduces an option to control whether to use 32-bit
types to emulate.
Differential Revision: https://reviews.llvm.org/D100059
Per the TypeConverter API contract, returning `llvm:None` means
other conversion rules should be tried. But we only have one
rule per input type. So there is no need to try others and we can
just directly fail, which should return `nullptr`. This avoids
unnecessary checks.
Differential Revision: https://reviews.llvm.org/D100058
The patch enables the use of index type in vectors. It is a prerequisite to support vectorization for indexed Linalg operations. This refactoring became possible due to the newly introduced data layout infrastructure. The data layout of a module defines the bitwidth of the index type needed to verify bitcasts and similar vector operations.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D99948
This option has been deprecated for 6 months, change the default setting for now before
future removal.
While clients can set the option to true for now, they should start
updating their passes to define the right `dependentDialects` in
preparation of the removal of this option. See the FAQ for more info:
https://mlir.llvm.org/getting_started/Faq/
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D99025
When allocLikeOp is updated in alloc constant folding,
alighnment attribute was ignored. This patch fixes it.
Signed-off-by: Haruki Imai <imaihal@jp.ibm.com>
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D99882
Some sparse matrices operate on integral values (in contrast with the common
f32 and f64 values). This CL expands the compiler and runtime support to deal
with several common type combinations.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D99999
Also factors out out-of-bounds mask generation from vector.transfer_read/write into a new MaterializeTransferMask pattern.
Differential Revision: https://reviews.llvm.org/D100001
These are element-wise operations that operates on shapes with equal ranks.
Also add missing printer/parser for join operator.
Differential Revision: https://reviews.llvm.org/D99986
Add the `getCapsule()` and `createFromCapsule()` methods to the PyOperation class.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D99927
Table op lowering to linalg.generic for both i8 (behaves like a gather) and a
pair of gathers with a quantized interpolation.
Differential Revision: https://reviews.llvm.org/D99756
Enables performing the same filtering in the op doc definition as in the op definition generator.
Differential Revision: https://reviews.llvm.org/D99793
MLIR test Dialect/Linalg/transform-patterns.mlir tries to check for the
absence of a sequence of instructions with several CHECK-NOT with one of
those directives using a variable defined in another. However CHECK-NOT
are checked independently so that is using a variable defined in a
pattern that should not occur in the input.
This commit removes the dependency between those CHECK-NOT by replacing
occurences of variables by the regex that were used to define them.
Note to reviewers: please pay attention to whether the remaining
reference to l0 is correct. There was a l0 defined in those CHECK-NOT
and one defined before. I'm not sure what was the intent there.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D99957
MLIR test Transforms/canonicalize.mlir tries to check for the absence of
a sequence of instructions with several CHECK-NOT with one of those
directives using a variable defined in another. However CHECK-NOT are
checked independently so that is using a variable defined in a pattern
that should not occur in the input.
This commit removes the dependency between those CHECK-NOT by replacing
occurences of variables by the regex that were used to define them.
Reviewed By: pifon2a
Differential Revision: https://reviews.llvm.org/D99958
Linalg fusion on tensors has mismatching assumptions on the operand side than on the region bbArg side.
Relax the behavior on the operand/indexing map side so that we better support output operands that may also be read from.
Differential revision: https://reviews.llvm.org/D99499
MLIR test Dialect/Linalg/tile-indexed-generic.mlir has a CHECK-NOT
directive referring to a variable only defined in a CHECK directive with
a different prefix, and thus undefined in the CHECK-NOT.
This commit removes the variable reference altogether to error on any
content it might have.
Reviewed By: pifon2a
Differential Revision: https://reviews.llvm.org/D99956
The existing implementation was always creating 32-bit constants for
floating-point and integer reductions regardless of the actual type, which
resulted in invalid IR being generated for any types other than f32 and i32
when lowering affine.parallel to SCF. Use the actual type instead.
Reviewed By: chelini
Differential Revision: https://reviews.llvm.org/D99942
Right now Elementwise operations fusion in Linalg fuses everything it
can. This can run up against resource limits of the target hardware
without some checks. This patch adds a callback function that clients
can use to implement a cost function. When two elementwise operations
are deemed structurally fusable, the callback can be used to control
if the fusion applies.
Differential Revision: https://reviews.llvm.org/D99820
The moved `populate` methods are only relevant to Linalg
operations. So they are better of in `linalg` namespace. Also rename
`populateLinalgTensorOpsFusionPatterns` to
`populateElementwiseOpsFusionPatterns`. This makes the scope of these
patterns explicit and disambiguates it with fusion on tensors using
tile + fuse.
Differential Revision: https://reviews.llvm.org/D99819