There's no advantage to this instruction unless you need to avoid touching other flag bits. It's encoding is longer, it can't fold an immediate, it doesn't write all the flags.
I don't think gcc will generate this instruction either.
Fixes PR38852.
Differential Revision: https://reviews.llvm.org/D51754
llvm-svn: 342059
This patch adds codegen support for the saving/restoring
V8-V23 for functions specified with the aarch64_vector_pcs
calling convention attribute, as added in patch D51477.
Reviewers: t.p.northover, gberry, thegameg, rengolin, javed.absar, MatzeB
Reviewed By: thegameg
Differential Revision: https://reviews.llvm.org/D51479
llvm-svn: 342049
Eliminating some duplication of rangelist dumping code at the expense of
some version-dependent code in dump and extract routines.
Reviewer: dblaikie, JDevlieghere, vleschuk
Differential revision: https://reviews.llvm.org/D51081
llvm-svn: 342048
The output of splitLargeGEPOffsets does not appear to be deterministic because
of the way that we iterate over a DenseMap. I've changed it to a MapVector for
consistent output.
The test here isn't particularly great, only showing a consmetic difference in
output. The original reproducer is much larger but show a diffierence in
instruction ordering, leading to different codegen.
Differential Revision: https://reviews.llvm.org/D51851
llvm-svn: 342043
Previously the alignment on the newly created switch table data was not set,
meaning that DataLayout::getPreferredAlignment was free to overalign it to 16
bytes. This causes unnecessary code bloat.
Differential Revision: https://reviews.llvm.org/D51800
llvm-svn: 342039
SMLAD and SMLALD instructions also come in the form of SMLADX and
SMLALDX which perform an exchange on their second operand. To support
this, more of the loads in the MAC candidates are compared for
sequential access and a boolean value has been added to BinOpChain.
AddMACCandiate has been refactored into a small pattern matching
state machine to reduce the amount of duplicated code, but also to
enable the matching to be more flexible. CreateParallelMACPairs now
iterates through all the candidates to find parallel ones.
Differential Revision: https://reviews.llvm.org/D51424
llvm-svn: 342033
This patch adds parsing support for the 'aarch64_vector_pcs'
calling convention attribute to calls and function declarations.
More information describing the vector ABI and procedure call standard
can be found here:
https://developer.arm.com/products/software-development-tools/\
hpc/arm-compiler-for-hpc/vector-function-abi
Reviewers: t.p.northover, rnk, rengolin, javed.absar, thegameg, SjoerdMeijer
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D51477
llvm-svn: 342030
Move the 2 classes out of LoopVectorize.cpp to make it easier to re-use
them for VPlan outside LoopVectorize.cpp
Reviewers: Ayal, mssimpso, rengolin, dcaballe, mkuper, hsaito, hfinkel, xbolva00
Reviewed By: rengolin, xbolva00
Differential Revision: https://reviews.llvm.org/D49488
llvm-svn: 342027
Summary:
In GNUX23, is64BitMode returns true, but pointers are 32-bits. So we shouldn't copy pointer values into RSI/RDI since the widths don't match.
Fixes PR38865 despite what the title says. I think the llvm_unreachable in the copyPhysReg code tricked the optimizer and made the fatal error trigger.
Reviewers: rnk, efriedma, MatzeB, echristo
Reviewed By: efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51893
llvm-svn: 342015
Since the outliner is a module pass, it doesn't get codegen size remarks like
the other codegen passes do. This adds size remarks *to* the outliner.
This is kind of a workaround, so it's peppered with FIXMEs; size remarks
really ought to not ever be handled by the pass itself. However, since the
outliner is the only "MachineModulePass", this works for now. Since the
entire purpose of the MachineOutliner is to produce code size savings, it
really ought to be included in codgen size remarks.
If we ever go ahead and make a MachineModulePass (say, something similar to
MachineFunctionPass), then all of this ought to be moved there.
llvm-svn: 342009
Name: op_ugt_sum
%a = add i8 %x, %y
%r = icmp ugt i8 %x, %a
=>
%notx = xor i8 %x, -1
%r = icmp ugt i8 %y, %notx
Name: sum_ult_op
%a = add i8 %x, %y
%r = icmp ult i8 %a, %x
=>
%notx = xor i8 %x, -1
%r = icmp ugt i8 %y, %notx
https://rise4fun.com/Alive/ZRxI
AFAICT, this doesn't interfere with any add-saturation patterns
because those have >1 use for the 'add'. But this should be
better for IR analysis and codegen in the basic cases.
This is another fold inspired by PR14613:
https://bugs.llvm.org/show_bug.cgi?id=14613
llvm-svn: 342004
This reverts rL341954.
The builder `sanitizer-x86_64-linux-bootstrap-ubsan` has been
failing with timeouts at stage2 clang/ubsan:
[3065/3073] Linking CXX executable bin/lld
command timed out: 1200 seconds without output running python
../sanitizer_buildbot/sanitizers/buildbot_selector.py,
attempting to kill
llvm-svn: 342001
Summary:
There are two registers encoded in the S_FRAMEPROC flags: one for locals
and one for parameters. The encoding is described by the
ExpandEncodedBasePointerReg function in cvinfo.h. Two bits are used to
indicate one of four possible values:
0: no register - Used when there are no variables.
1: SP / standard - Variables are stored relative to the standard SP
for the ISA.
2: FP - Variables are addressed relative to the ISA frame
pointer, i.e. EBP on x86. If realignment is required, parameters
use this. If a dynamic alloca is used, locals will be EBP relative.
3: Alternative - Variables are stored relative to some alternative
third callee-saved register. This is required to address highly
aligned locals when there are dynamic stack adjustments. In this
case, both the incoming SP saved in the standard FP and the current
SP are at some dynamic offset from the locals. LLVM uses ESI in
this case, MSVC uses EBX.
Most of the changes in this patch are to pass around the CPU so that we
can decode these into real, named architectural registers.
Subscribers: hiraditya
Differential Revision: https://reviews.llvm.org/D51894
llvm-svn: 341999
These are the folds in Alive;
Name: xor_ult
Pre: isPowerOf2(-C1)
%xor = xor i8 %x, C1
%r = icmp ult i8 %xor, C1
=>
%r = icmp ugt i8 %x, ~C1
Name: xor_ugt
Pre: isPowerOf2(C1+1)
%xor = xor i8 %x, C1
%r = icmp ugt i8 %xor, C1
=>
%r = icmp ugt i8 %x, C1
https://rise4fun.com/Alive/Vty
The ugt case in its simplest form was already handled by DemandedBits,
but that's not ideal as shown in the multi-use test.
I'm not sure if these are all of the symmetrical folds, but I adjusted
the existing code for one of the folds to try to show the similarities.
There's no obvious connection, but this is another preliminary step
for PR14613...
https://bugs.llvm.org/show_bug.cgi?id=14613
llvm-svn: 341997
Summary: Initial support for nsw, nuw and exact flags in MI
Reviewers: spatel, hfinkel, wristow
Reviewed By: spatel
Subscribers: nlopes
Differential Revision: https://reviews.llvm.org/D51738
llvm-svn: 341996
Summary:
Place global arrays in comdat sections with their associated functions.
This makes sure they are stripped along with the functions they
reference, even on the BFD linker.
Reviewers: eugenis
Reviewed By: eugenis
Subscribers: eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D51902
llvm-svn: 341987
Summary:
Update MemorySSA in old LoopUnswitch pass.
Actual dependency and update is disabled by default.
Subscribers: sanjoy, jlebar, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D45301
llvm-svn: 341984
into TargetParser.
Also switch away from target features to CPU string when
determining isa version. This fixes an issue when we
output wrong isa version in the object code when features
of a particular CPU are altered (i.e. gfx902 w/o xnack
used to result in gfx900).
Differential Revision: https://reviews.llvm.org/D51890
llvm-svn: 341982
I noticed that we were not back-propagating undef lanes to shuffle masks when we have a
shuffle that reduces the vector width. This is part of investigating/solving PR38691:
https://bugs.llvm.org/show_bug.cgi?id=38691
The DAG equivalent was proposed with:
D51696
Differential Revision: https://reviews.llvm.org/D51433
llvm-svn: 341981
In r337348, I changed lowering to prefer X86ISD::UNPCKL/UNPCKH opcodes over MOVLHPS/MOVHLPS for v2f64 {0,0} and {1,1} shuffles when we have SSE2. This enabled the removal of a bunch of weirdly bitcasted isel patterns in r337349. To avoid changing the tests I placed a gross hack in isel to still emit movhlps instructions for fake unary unpckh nodes. A similar hack was not needed for unpckl and movlhps because we do execution domain switching for those. But unpckh and movhlps have swapped operand order.
This patch removes the hack.
This is a code size increase since unpckhpd requires a 0x66 prefix and movhlps does not. But if that's a big concern we should be using movhlps for all unpckhpd opcodes and let commuteInstruction turnit into unpckhpd when its an advantage.
Differential Revision: https://reviews.llvm.org/D49499
llvm-svn: 341973
GNUX32 uses 32-bit pointers despite is64BitMode being true. So we should use EAX to return the value.
Fixes ones of the failures from PR38865.
Differential Revision: https://reviews.llvm.org/D51940
llvm-svn: 341972
For vectors, getPrimitiveSizeInBits returns the full vector width. This code should using the element size for vectors. This could be fixed by calling getScalarSizeInBits, but its even easier to just get it from the APInt we're checking.
Differential Revision: https://reviews.llvm.org/D51938
llvm-svn: 341971
There are 2 cases when we create PHI nodes:
* For the result of the call that was duplicated in the split blocks.
Those PHI nodes should have the debug location of the call.
* For values produced before the call. Those instructions need to be
duplicated in the split blocks and the PHI nodes should have the
debug locations of those instructions.
Fixes PR37962.
Reviewers: junbuml, gbedwell, vsk
Reviewed By: junbuml
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D51919
llvm-svn: 341970
An fp_to_sint node would be incorrectly lowered to a TruncIntFP node in
single-float mode. This would trigger an "Unexpected illegal type!"
assert.
Patch by Dan Ravensloft.
Differential revision: https://reviews.llvm.org/D51810
llvm-svn: 341952
Summary:
Place global arrays in comdat sections with their associated functions.
This makes sure they are stripped along with the functions they
reference, even on the BFD linker.
Reviewers: eugenis
Reviewed By: eugenis
Subscribers: eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D51902
llvm-svn: 341951
Fix for https://bugs.llvm.org/show_bug.cgi?id=38807, which occurred
while compiling SemaTemplateInstantiate.cpp with clang and GVNHoist
enabled. In the following example:
1=def(entry)
/ \
2=def(1) 4=def(1)
3=def(2) 5=def(4)
When removing the MemoryDef 2=def(1) from its basic block, and just
before adding it to the end of the parent basic block, we first
replace all its uses with the defining memory access:
3=def(2) -> 3=def(1)
Then we call insertDef for adding 2=def(1) to the parent basic block,
where we replace the uses of 1=def(entry) with 2=def(1). Doing so we
create a self reference:
2=def(1) -> 2=def(2) (bad)
3=def(1) -> 3=def(2) (ok)
4=def(1) -> 4=def(2) (ok)
Differential Revision: https://reviews.llvm.org/D51801
llvm-svn: 341947
For some reason, llvm-objdump defaults to -arch=i386 on this system while
the test checks x86_64 output. Explicitly pass -arch=x86_64.
llvm-svn: 341944
Summary:
The undef and the infinite loop at the end cause this test to be translated
unpredictably. In particular, the checked-for `mpy` disappears under
certain legal optimizations (e.g. the one in D50222).
Since the use of these constructs is not relevant to the behavior tested,
according to the header comment, this change, suggested by @kparzysz,
eliminates them.
Was initially committed in r341046, but was reverted.
Patch by: hermord (Dmytro Shynkevych)!
Reviewers: kparzysz
Reviewed By: kparzysz
Subscribers: lebedev.ri, llvm-commits, kparzysz
Differential Revision: https://reviews.llvm.org/D50944
llvm-svn: 341943
Search from i64 reducing phis, as well as i32, to allow the
generation of smlald instructions.
Differential Revision: https://reviews.llvm.org/D51101
llvm-svn: 341941
This patch adds support for ORC JIT for mips/mips64 architecture.
In common code $static is changed to __ORCstatic because on MIPS
architecture "$" is a reserved character.
Patch by Luka Ercegovcevic
Differential Revision: https://reviews.llvm.org/D49665
llvm-svn: 341934
The presence of readnone and an access range attribute (argmemonly,
inaccessiblememonly, inaccessiblemem_or_argmemonly) is considered an
error by the verifier. This seems strict but also not wrong. This
patch makes sure function attribute detection will remove all access
range attributes for readnone functions.
llvm-svn: 341927
MIPS ISAs start to support third operand for the `rdhwr` instruction
starting from Revision 6. But LLVM generates assembler code with
three-operands version of this instruction on any MIPS64 ISA. The third
operand is always zero, so in case of direct code generation we get
correct code.
This patch fixes the bug by adding an instruction alias. The same alias
already exists for 32-bit ISA.
Ideally, we also need to reject three-operands version of the `rdhwr`
instruction in an assembler code if ISA revision is less than 6. That is
a task for a separate patch.
This fixes PR38861 (https://bugs.llvm.org/show_bug.cgi?id=38861)
Differential revision: https://reviews.llvm.org/D51773
llvm-svn: 341919
MOVMSKPS and MOVMSKPD both take FP types, but likely the operations before it are on integer types with just a int->fp bitcast between them. If the bitcast isn't used by anything else and doesn't change the element width we can look through it to simplify the integer ops.
llvm-svn: 341915
These are test cases inspired by sequences like below for extracting the same bit from every vector element and checking for all zeros/ones.
define i1 @and256_x8(<8 x i32>) {
%a = trunc <8 x i32> %0 to <8 x i1>
%b = bitcast <8 x i1> %a to i8
%d = icmp eq i8 %b, -1
ret i1 %d
}
This is what the above looks like after InstCombine.
define i1 @and256_x8_opt(<8 x i32>) {
%2 = and <8 x i32> %0, <i32 1, i32 1, i32 1, i32 1, i32 1, i32 1, i32 1, i32 1>
%a = icmp ne <8 x i32> %2, zeroinitializer
%b = bitcast <8 x i1> %a to i8
%d = icmp eq i8 %b, -1
ret i1 %d
}
llvm-svn: 341908
Summary:
This more correctly reflects the data written by the FDR mode runtime.
This is a continuation of the work in D50441.
Reviewers: mboerger, eizan
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D51911
llvm-svn: 341905
We should never abort on valid IR. The most reasonable
interpretation of an arbitrary address space pointer is
probably some kind of special subset of global memory.
llvm-svn: 341894
With the merge of TUs and CUs into a single container, some code that
relied on the CU range having an ordered range of contiguous addresses
(for locating a CU at a given offset) broke. But the units from
debug_info (currently only CUs, but CUs and TUs in DWARFv5) are in a
contiguous sub-range of that container - searching only through that
subrange is still valid & so do that.
llvm-svn: 341889
This patch does the following things:
1. update SymbolicallyEvaluateGEP so that it bails out if it cannot preserve inrange arribute;
2. update llvm/test/Analysis/ConstantFolding/gep.ll to remove UB in it;
3. remove inaccurate comment above ConstantFoldInstOperandsImpl in llvm/lib/Analysis/ConstantFolding.cpp;
4. add a new regression test that makes sure that no optimizations change an inrange GEP in an unexpected way.
Patch by Zhaomo Yang!
Differential Revision: https://reviews.llvm.org/D51698
llvm-svn: 341888
Summary:
In this change, we implement a `BlockPrinter` which orders records in a
Block that's been indexed by the `BlockIndexer`. This is used in the
`llvm-xray fdr-dump` tool which ties together the various types and
utilities we've been working on, to allow for inspection of XRay FDR
mode traces both with and without verification.
This change is the final step of the refactoring of D50441.
Reviewers: mboerger, eizan
Subscribers: mgorny, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D51846
llvm-svn: 341887
Just was made aware that this is necessary for tests outside of
the X86 subdirectory. Add a REQUIRES line to make sure bots that
don't enable x86 are happy.
llvm-svn: 341885
If the multiply won't overflow in the original type we can use a smaller mul and sign extend afterwards. We don't currently support this for vector constants.
llvm-svn: 341884
Summary:
Revert min/max changes in rL341674 dues to high compile times causing timeouts (PR38897).
Checking in to unblock failing builds. Patch available for post-commit review and re-revert once resolved.
Working on a smaller reproducer for PR38897.
Reviewers: craig.topper, spatel
Subscribers: sanjoy, jlebar, llvm-commits
Differential Revision: https://reviews.llvm.org/D51897
llvm-svn: 341883
This adds per-function size remarks to codegen, similar to what we have in the
IR layer as of r341588. This only impacts MachineFunctionPasses.
This does the same thing, but for `MachineInstr`s instead of just
`Instructions`. After this, when a `MachineFunctionPass` modifies the number of
`MachineInstr`s in the function it ran on, you'll get a remark.
To enable this, use the size-info analysis remark as before.
llvm-svn: 341876
The only point to this change is the test diffs. When I remove this code entirely (in favor of the recently added generic handling), I don't want there to be any confusion due to spurious test diffs.
As an aside, the fact out tests are AST construction order dependent is not great. I thought about fixing that, but the reasonable schemes I might want (e.g. sort by name) need the test diffs anyways.
Philip
llvm-svn: 341841
LSR reassociates small constants that fit into add immediate operands as
unfolded offset. Since unfolded offset is not combined with loop-invariant
registers, LSR does not consider solutions that bump invariant registers by
these constants outside the loop.
llvm-svn: 341835
There were two combines not covered by the check before now, neither of which
actually differed from normal in the benefit analysis.
The most recent seems to be because it was just added at the top of the
function (naturally). The older is from way back in 2008 (r46687) when we just
didn't put those checks in so routinely, and has been diligently maintained
since.
llvm-svn: 341831
When GVN propagates an equality by replacing one value with another it also
needs to invalidate the cached information for the value being replaced.
Differential Revision: https://reviews.llvm.org/D51218
llvm-svn: 341820
This already worked if only one register piece was used,
but didn't if a type was split into multiple, unequal
sized pieces.
Fixes not splitting 3i16/v3f16 into two registers for
AMDGPU.
This will also allow fixing the ABI for 16-bit vectors
in a future commit so that it's the same for all subtargets.
llvm-svn: 341801
Summary:
This fixes a bug where a large number of implicit def instructions can fill the GCNHazardRecognizer lookahead buffer causing required NOPs to not be inserted.
Reviewers: nhaehnle, arsenm
Reviewed By: arsenm
Subscribers: sheredom, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D51726
Change-Id: Ie75338f94de704ee5816b05afd0c922c6748a95b
llvm-svn: 341798
Currently, `sinkUnusedInvariants` does not set Changed flag even if it makes
changes in the IR. There is no clear evidence that it can cause a crash, but it
looks highly suspicious and likely invalid.
Differential Revision: https://reviews.llvm.org/D51777
Reviewed By: skatkov
llvm-svn: 341777
We have isel patterns for v4i32/v4f64 that artificially widen to v8i32/v8f64 so just use that.
If x86-experimental-vector-widening-legalization is enabled, we don't need any custom legalization and can just return. I've modified the test RUN lines to cover this case.
llvm-svn: 341765
This is the DAG equivalent of D51433.
If we know we're not using all vector lanes, use that knowledge to potentially simplify a vselect condition.
The reduction/horizontal tests show that we are eliminating AVX1 operations on the upper half of 256-bit
vectors because we don't need those anyway.
I'm not sure what the pr34592 test is showing. That's run with -O0; is SimplifyDemandedVectorElts supposed
to be running there?
Differential Revision: https://reviews.llvm.org/D51696
llvm-svn: 341762
Summary:
This patch allows vectors with a power of 2 number of elements and i8/i16 element type to select paddus/psubus instructions. ReplaceNodeResults has been updated to custom widen these operations up to 128 bits like we already do for PAVG.
Another step towards fixing PR38691
Reviewers: RKSimon, spatel
Reviewed By: RKSimon, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51818
llvm-svn: 341753
This is a MIR test so we can test ADOX which we have no isel patterns for. I also plan to remove ADCX isel patterns in the near future so this will help maintain coverage.
llvm-svn: 341751
We are currently only able to fold a load in operand 1 to ADCX. A load in operand 0 will use the legacy ADC instruction.
Ultimately I want to remove isel support for ADCX, but first I'm going to fix the shortcomings I know of so I can write proper MIR tests to maintain coverage later.
llvm-svn: 341744
We currently have no way to isel ADOX and I plan to remove isel patterns for ADCX. This test will ensure we still have stack folding support for these instructions if we need them in the future.
llvm-svn: 341743
This patch removes addBlockByrefAddress(), it is dead code as far as
clang is concerned: Every byref block capture is emitted with a
complex expression that is equivalent to what this function does.
rdar://problem/31629055
Differential Revision: https://reviews.llvm.org/D51763
llvm-svn: 341737
They were unintentionally calling DIA directly, which requires
Windows. We need to pass the -native flag, and this then required
fixing up one or two tests.
llvm-svn: 341731
In order to start testing this, I've added a new mode to
llvm-pdbutil which is only really useful for writing tests.
It just dumps the value of raw fields in record format.
This isn't really ideal and it won't allow us to test some
important cases, but it's better than nothing for now.
llvm-svn: 341729
Summary:
MSVC and LLD sort sections ASCII-betically, so we need to use section
names that sort between .CRT$XCA (the start) and .CRT$XCU (the default
priority).
In the general case, use .CRT$XCT12345 as the section name, and let the
linker sort the zero-padded digits.
Users with low priorities typically want to initialize as early as
possible, so use .CRT$XCA00199 for prioties less than 200. This number
is arbitrary.
Implements PR38552.
Reviewers: majnemer, mstorsjo
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D51820
llvm-svn: 341727
Summary:
Like with other similar intrinsics, presense of strip or
launder.invariant.group should not change the result of inlining cost.
This is because they are just markers and do not perform any computation.
Reviewers: amharc, rsmith, reames, kuhar
Subscribers: eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D51814
llvm-svn: 341725
Summary:
Since the shuffle mask is not exposed as an operand in the native ISel
DAG, create a new WebAssembly ISD node exposing the mask. The mask is
lowered as sixteen immediate byte indices no matter what type the
original vector shuffle was operating on.
This CL depends on D51656
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D51659
llvm-svn: 341718
AliasSetTracker has special case handling for memset, memcpy and memmove which pre-existed argmemonly on functions and readonly and writeonly on arguments. This patch generalizes it using the AA infrastructure to any call correctly annotated.
The motivation here is to cut down on confusion, not performance per se. For most instructions, there is a direct mapping to alias set. However, this is not guaranteed by the interface and was not in fact true for these three intrinsics *and only these three intrinsics*. I kept getting myself confused about this invariant, so I figured it would be good to clearly distinguish between a instructions and alias sets. Calls happened to be an easy target.
The nice side effect is that custom implementations of memset/memcpy/memmove - including wrappers discovered by IPO - can now be optimized the same as builts by LICM.
Note: The actual removal of the memset/memtransfer specific handling will happen in a follow on NFC patch. It was originally part of this one, but separate for ease of review and rebase.
Differential Revision: https://reviews.llvm.org/D50730
llvm-svn: 341713
The main use case for this directive is to allow assembly writers to
write their own FPO data strings without going through the .cv_fpo*
directive family.
I'm experimenting with different RPN programs to fix PR38857, and I
figured I should go ahead and make this directive permanent.
llvm-svn: 341712
shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
The motivating case from:
https://bugs.llvm.org/show_bug.cgi?id=38691
...is the last regression test. In that case, we're just left with the narrow select.
Note that if we do create new shuffles, they use the existing extraction identity mask,
so there's no danger that this transform creates arbitrary shuffles.
Differential Revision: https://reviews.llvm.org/D51496
llvm-svn: 341708
Summary:
Reserving registers x1-7 is used to support CONFIG_ARM64_LSE_ATOMICS in Linux kernel. This change adds support for reserving registers x1 through x7.
Reviewers: javed.absar, phosek, srhines, nickdesaulniers, efriedma
Reviewed By: nickdesaulniers, efriedma
Subscribers: niravd, jfb, manojgupta, nickdesaulniers, jyknight, efriedma, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D48580
llvm-svn: 341706
The generic type legalizer will scalarize vXi1 instructions getting rid of the vector entirely. Creating wider vector instructions is just going to prevent that.
llvm-svn: 341705
The type legalizer will try to scalarize this and fail.
It looks like there's some other v1iX oddities out there too since we still generated some vector instructions.
llvm-svn: 341704
Similar to what was recently done for addcarry/subborrow and has been done for rdrand/rdseed for a while. It's better to use two results and an explicit store in IR when the store isn't part of the semantics of the instruction. This allows store->load forwarding to happen in the middle end. Or the store to be removed if its never loaded.
Differential Revision: https://reviews.llvm.org/D51803
llvm-svn: 341698
Summary:
RISCVDisassembler should check number of bytes available before reading them.
Crash noticed when enabling -DLLVM_USE_SANITIZER=Address.
This bug was uncovered by a LLVM MC Disassembler Protocol Buffer Fuzzer for the RISC-V assembly language.
Reviewers: asb
Reviewed By: asb
Subscribers: rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, mgrang, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, asb
Differential Revision: https://reviews.llvm.org/D51708
llvm-svn: 341686
We should represent the store directly in IR instead. This gives the middle end a chance to remove it if it can see a load from the same address.
Differential Revision: https://reviews.llvm.org/D51769
llvm-svn: 341677
Previously we only handled loads in operand 0, but nothing guarantees the load will be operand 0 for commutable operations.
Differential Revision: https://reviews.llvm.org/D51768
llvm-svn: 341675
If the ~X wasn't able to simplify above the max/min, we might be able to simplify it by moving it below the max/min.
I had to modify the ~(min/max ~X, Y) transform to prevent getting stuck in a loop when we saw the new ~(max/min X, ~Y) before the ~Y had been folded away to remove the new not.
Differential Revision: https://reviews.llvm.org/D51398
llvm-svn: 341674
Fix a latent bug in loop vectorizer which generates incorrect code for
memory accesses that are executed conditionally. As pointed in review,
this bug definitely affects uniform loads and may affect conditional
stores that should have turned into scatters as well).
The code gen for conditionally executed uniform loads on architectures
that support masked gather instructions is broken.
Without this patch, we were unconditionally executing the *conditional*
load in the vectorized version.
This patch does the following:
1. Uniform conditional loads on architectures with gather support will
have correct code generated. In particular, the cost model
(setCostBasedWideningDecision) is fixed.
2. For the recipes which are handled after the widening decision is set,
we use the isScalarWithPredication(I, VF) form which is added in the
patch.
3. Fix the vectorization cost model for scalarization
(getMemInstScalarizationCost): implement and use isPredicatedInst to
identify *all* predicated instructions, not just scalar+predicated. So,
now the cost for scalarization will be increased for maskedloads/stores
and gather/scatter operations. In short, we should be choosing the
gather/scatter in place of scalarization on archs where it is
profitable.
4. We needed to weaken the assert in useEmulatedMaskMemRefHack.
Reviewers: Ayal, hsaito, mkuper
Differential Revision: https://reviews.llvm.org/D51313
llvm-svn: 341673
Find cold blocks based on profile information (or optionally with static analysis).
Forward propagate profile information to all cold-blocks.
Outline a cold region.
Set calling conv and prof hint for the callsite of the outlined function.
Worked in collaboration with: Sebastian Pop <s.pop@samsung.com>
Differential Revision: https://reviews.llvm.org/D50658
llvm-svn: 341669
If OtherOpT or OtherOpF have scalar types and the condition is a vector,
we would create an invalid select.
Reviewers: spatel, john.brawn, mssimpso, craig.topper
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D51781
llvm-svn: 341666
Summary:
Extend LDV so that stack slot offsets for spilled sub-registers
are added to the emitted debug locations. This is accomplished
by querying InstrInfo::getStackSlotRange().
With this change, LDV will add a DW_OP_plus_uconst operation to
the expression if a sub-register is spilled. Later on, PEI will
add an offset operation for the stack slot, meaning that we will
get expressions of the forms:
* {DW_OP_constu #fp-offset, DW_OP_minus,
DW_OP_plus_uconst #subreg-offset}
* {DW_OP_plus_const #fp-offset,
DW_OP_minus, DW_OP_plus_uconst #subreg-offset}
The two offset operations should ideally be merged.
Reviewers: rnk, aprantl, stoklund
Reviewed By: aprantl
Subscribers: dblaikie, bjope, nemanjai, JDevlieghere, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D51612
llvm-svn: 341659
Add support for bitcasts from float type to an integer type of the same element bitwidth.
There maybe cases where we need to support different widths (e.g. as SSE __m128i is treated as v2i64) - but I haven't seen cases of this in the wild yet.
llvm-svn: 341652
Currently eliminateInstructions only returns true if any instruction got
replaced. In the test case for this patch, we eliminate the trivially
dead calls, for which eliminateInstructions not do a replacement and the
function is not marked as changed, which is why the inliner crashes
while traversing the call graph.
Alternatively we could also change eliminateInstructions to return true
in case we mark instructions for deletion, but that's slightly more code
and doing it at the place where the replacement happens seems safer.
Fixes PR37517.
Reviewers: davide, mcrosier, efriedma, bjope
Reviewed By: bjope
Differential Revision: https://reviews.llvm.org/D51169
llvm-svn: 341651
Because t2LDREX (& t2STREX) were marked as AddrModeNone, but did allow a
FrameIndex operand, rewriteT2FrameIndex asserted. This gives them a
proper addressing-mode and tells the rewriter about it so that encodable
offsets are exploited and others are rejected.
Should fix PR38828.
llvm-svn: 341642
Introduce the -msan-kernel flag, which enables the kernel instrumentation.
The main differences between KMSAN and MSan instrumentations are:
- KMSAN implies msan-track-origins=2, msan-keep-going=true;
- there're no explicit accesses to shadow and origin memory.
Shadow and origin values for a particular X-byte memory location are
read and written via pointers returned by
__msan_metadata_ptr_for_load_X(u8 *addr) and
__msan_store_shadow_origin_X(u8 *addr, uptr shadow, uptr origin);
- TLS variables are stored in a single struct in per-task storage. A call
to a function returning that struct is inserted into every instrumented
function before the entry block;
- __msan_warning() takes a 32-bit origin parameter;
- local variables are poisoned with __msan_poison_alloca() upon function
entry and unpoisoned with __msan_unpoison_alloca() before leaving the
function;
- the pass doesn't declare any global variables or add global constructors
to the translation unit.
llvm-svn: 341637
Third Attempt:
- Alignment issues resolved.
- zlib::isAvailable() detected.
- ArrayRef misuse fixed.
Usage:
llvm-objcopy --compress-debug-sections=zlib foo.o
llvm-objcopy --compress-debug-sections=zlib-gnu foo.o
In both cases the debug section contents is compressed with zlib. In the GNU
style case the header is the "ZLIB" magic string followed by the uint64 big-
endian decompressed size. In the non-GNU mode the header is the
Elf(32|64)_Chdr.
Decompression support is coming soon.
Differential Revision: https://reviews.llvm.org/D49678
llvm-svn: 341635
IndVars does not set `Changed` flag when it eliminates dead instructions. As result,
it may make IR modifications and report that it has done nothing. It leads to inconsistent
preserved analyzes results.
Differential Revision: https://reviews.llvm.org/D51770
Reviewed By: skatkov
llvm-svn: 341633
Second Attempt. Alignment issues resolved. zlib::isAvailable() detected.
Usage:
llvm-objcopy --compress-debug-sections=zlib foo.o
llvm-objcopy --compress-debug-sections=zlib-gnu foo.o
In both cases the debug section contents is compressed with zlib. In the GNU
style case the header is the "ZLIB" magic string followed by the uint64 big-
endian decompressed size. In the non-GNU mode the header is the
Elf(32|64)_Chdr.
Decompression support is coming soon.
Differential Revision: https://reviews.llvm.org/D49678
llvm-svn: 341607
ADC is commutable and the load could be in either operand, but we were only checking operand 0.
Ideally we'd mark X86adc_flag as commutable and tablegen would automatically do this, but the EFLAGS register mention is preventing it.
llvm-svn: 341606
The ADC instruction is commutable, but we only have RMW isel patterns with a load on the left hand side. Nothing will canonicalize loads to the LHS on these ops. So we need two patterns.
llvm-svn: 341605
SHF_ARM_PURECODE flag when being built with the -mexecute-only flag.
All code sections of an ELF must have the flag set for the final .text
section to be execute-only, otherwise the flag gets removed.
A HasData flag is added to MCSection to aid in the determination that
the section is empty. A virtual setTargetSectionFlags is added to
MCELFObjectTargetWriter to allow subclasses to set target specific
section flags to be added to sections which we then use in the ARM
backend to set SHF_ARM_PURECODE.
Patch by Ivan Lozano!
Reviewed By: echristo
Differential Revision: https://reviews.llvm.org/D48792
llvm-svn: 341593
The patch tries to make sample profile loader independent of profile format
change. It moves compact format related code into FunctionSamples and
SampleProfileReader classes, and sample profile loader only has to interact
with those two classes and will be unaware of profile format changes.
The cleanup also contain some fixes to further remove the difference between
compactbinary format and binary format. After the cleanup using different
formats originated from the same profile will generate the same binaries,
which we verified by compiling two large server benchmarks w/wo thinlto.
Differential Revision: https://reviews.llvm.org/D51643
llvm-svn: 341591
This patch adds per-function size information remarks. Previously, passing
-Rpass-analysis=size-info would only give you per-module changes. By adding
the ability to do this per-function, it's easier to see which functions
contributed the most to size changes.
https://reviews.llvm.org/D51467
llvm-svn: 341588
It caused ambiguity between llvm:🆑:Optional and llvm::Optional, which
has been fixed by dropping `using namespace cl;` in favor of explicit
cl:: qualified names.
llvm-svn: 341586
Summary:
Instruction printer shouldn't crash with assertions due to incorrect input data. llvm_unreachable is not intended for runtime error handling.
Reviewers: petecoup
Reviewed By: petecoup
Differential Revision: https://reviews.llvm.org/D51728
llvm-svn: 341581
MRI scripts have two comment chars, * and ;, but only the latter was
supported before.
Also allow leading spaces before comment chars (and before any command
string), and allow comments after a command.
Differential Revision: https://reviews.llvm.org/D51338
llvm-svn: 341571
This fold is needed to avoid a regression when we try
to recommit rL300977.
We can't see the most basic win currently because
demanded bits changes the patterns:
https://rise4fun.com/Alive/plpp
llvm-svn: 341559
Summary:
I added a few ARM64 memset codegen tests in r341406 and r341493, and annotated
where the generated code was bad. This patch fixes the majority of the issues by
requesting that a 2xi64 vector be used for memset of 32 bytes and above.
The patch leaves the former request for f128 unchanged, despite f128
materialization being suboptimal: doing otherwise runs into other asserts in
isel and makes this patch too broad.
This patch hides the issue that was present in bzero_40_stack and bzero_72_stack
because the code now generates in a better order which doesn't have the store
offset issue. I'm not aware of that issue appearing elsewhere at the moment.
<rdar://problem/44157755>
Reviewers: t.p.northover, MatzeB, javed.absar
Subscribers: eraman, kristof.beyls, chrib, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D51706
llvm-svn: 341558
Add the __msan_va_arg_origin_tls TLS array to keep the origins for variadic function parameters.
Change the instrumentation pass to store parameter origins in this array.
This is a reland of r341528.
test/msan/vararg.cc doesn't work on Mips, PPC and AArch64 (because this
patch doesn't touch them), XFAIL these arches.
Also turned out Clang crashed on i80 vararg arguments because of
incorrect origin type returned by getOriginPtrForVAArgument() - fixed it
and added a test.
llvm-svn: 341554
Standardise on check lines:
* CHECK-ASM
* CHECK-OBJ
* CHECK-ASM-AND-OBJ
This allows for the addition of tests involving symbol operands, which will
not result in identical instructions in both assembly and disassembled object
output.
This commit doesn't exploit this reworking to increase test coverage of symbol
operands - that will come in a future patch.
llvm-svn: 341546
Add the __msan_va_arg_origin_tls TLS array to keep the origins for
variadic function parameters.
Change the instrumentation pass to store parameter origins in this array.
llvm-svn: 341528
Previously the alignment on the newly created global strings was not set,
meaning that DataLayout::getPreferredAlignment was free to overalign it
to 16 bytes. This caused unnecessary code bloat with the padding between
variables.
The main example of this happening was the printf->puts optimisation in
SimplifyLibCalls, but as the change here is made in
IRBuilderBase::CreateGlobalString, other globals using this will now be
aligned too.
Differential Revision: https://reviews.llvm.org/D51410
llvm-svn: 341527
Turns out that calling a variadic function with too many (e.g. >100 i64's)
arguments overflows __msan_va_arg_tls, which leads to smashing other TLS
data with function argument shadow values.
getShadow() already checks for kParamTLSSize and returns clean shadow if
the argument does not fit, so just skip storing argument shadow for such
arguments.
llvm-svn: 341525
In DwarfDebug::collectEntityInfo(), if the label entity is processed in
DbgLabels list, it means the label is not optimized out. There is no
need to generate debug info for it with null position.
llvm-svn: 341513
This basically reverts a change made in r336217, but improves the text of the error message for not allowing IP-relative addressing in 32-bit mode.
Fixes PR38826.
Patch by Iain Sandoe.
llvm-svn: 341512
I'm looking at some codegen optimization in this area and want to make sure I understand the current codegen and don't regress it. This patch further expands the tests (which I already expanded in r341406) to capture more of the current code generation when it comes to stack-based small non-zero memset on arm64. This patch annotates some potential fixes.
llvm-svn: 341493
This was proposed as an IR transform in D49306, but it was not clearly justifiable as a canonicalization.
Here, we only do the transform when the target tells us that sqrt can be lowered with inline code.
This is the basic case. Some potential enhancements are in the TODO comments:
1. Generalize the transform for other exponents (allow more than 2 sqrt calcs if that's really cheaper).
2. If we have less fast-math-flags, generate code to avoid -0.0 and/or INF.
3. Allow the transform when optimizing/minimizing size (might require a target hook to get that right).
Note that by default, x86 converts single-precision sqrt calcs into sqrt reciprocal estimate with
refinement. That codegen is controlled by CPU attributes and can be manually overridden. We have plenty
of test coverage for that already, so I didn't bother to include extra testing for that here. AArch uses
its full-precision ops in all cases (not sure if that's the intended behavior or not, but that should
also be covered by existing tests).
Differential Revision: https://reviews.llvm.org/D51630
llvm-svn: 341481
Summary:
Allow strip to be called on multiple input files, which is interpreted as stripping N files in place. Using multiple input files is incompatible with -o.
To allow this, create a `DriverConfig` struct which just wraps a list of `CopyConfigs`. objcopy will only ever have a single `CopyConfig`, but strip will have N (where N >= 1) CopyConfigs.
Reviewers: alexshap, jakehehrlich
Reviewed By: alexshap, jakehehrlich
Subscribers: MaskRay, jakehehrlich, llvm-commits
Differential Revision: https://reviews.llvm.org/D51660
llvm-svn: 341464
Normalize common kinds of DWARF sub-expressions to make debug info
encoding a bit more compact:
DW_OP_constu [X < 32] -> DW_OP_litX
DW_OP_constu [all ones] -> DW_OP_lit0, DW_OP_not (64-bit only)
Differential revision: https://reviews.llvm.org/D51640
llvm-svn: 341457
In lib/CodeGen/LiveDebugVariables.cpp, it uses std::prev(MBBI) to
get DebugValue's SlotIndex. However, the previous instruction may be
also a debug instruction. It could not use a debug instruction to query
SlotIndex in mi2iMap.
Scan all debug instructions and use the first debug instruction to query
SlotIndex for following debug instructions. Only handle DBG_VALUE in
handleDebugValue().
Differential Revision: https://reviews.llvm.org/D50621
llvm-svn: 341446
I'm probably missing some way to use m_Deferred to remove the code
duplication, but that can be a follow-up.
The improvement in demand_shrink_nsw.ll is an example of missing
the fold because the pattern matching was deficient. I didn't try
to follow the bits in that test, but Alive says it's correct:
https://rise4fun.com/Alive/ugc
llvm-svn: 341426
Summary:
Fixes the error "Link field value 0 in section .rela.plt is invalid" when copying/stripping certain binaries. Minimal repro:
```
$ cat /tmp/a.c
int main() { return 0; }
$ clang -static /tmp/a.c -o /tmp/a
$ llvm-strip /tmp/a -o /tmp/b
llvm-strip: error: Link field value 0 in section .rela.plt is invalid.
```
Reviewers: jakehehrlich, alexshap
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51493
llvm-svn: 341419
Reland r341269. Use std::stable_sort when sorting constant condidates.
Reverting commit, r341365:
Revert r341269: [Constant Hoisting] Hoisting Constant GEP Expressions
One of the tests is failing 50% of the time when expensive checks are
enabled. Not sure how deep the problem is so just reverting while the
author can investigate so that the bots stop repeatedly failing and
blaming things incorrectly. Will respond with details on the original
commit.
Original commit, r341269:
[Constant Hoisting] Hoisting Constant GEP Expressions
Leverage existing logic in constant hoisting pass to transform constant GEP
expressions sharing the same base global variable. Multi-dimensional GEPs are
rewritten into single-dimensional GEPs.
https://reviews.llvm.org/D51396
Differential Revision: https://reviews.llvm.org/D51654
llvm-svn: 341417
This is fix for PR38786.
First order recurrence phis were incorrectly treated as uniform,
which caused them to be vectorized as uniform instructions.
Patch by Ayal Zaks and Orivej Desh!
Reviewed by: Anna
Differential Revision: https://reviews.llvm.org/D51639
llvm-svn: 341416
There are 2 bugs shown here that were untested before:
1. We fail to perform the fold in 1/2 the possible commuted variants.
2. When the fold is done, it disregards extra uses.
llvm-svn: 341415
Emit a waterfall loop in the general case for a potentially-divergent Rsrc
operand. When practical, avoid this by using Addr64 instructions.
Differential Revision: https://reviews.llvm.org/D50982
llvm-svn: 341413
I'm looking at some codegen optimization in this area and want to make sure I understand the current codegen and don't regress it. This patch simply expands the two existing tests to capture more of the current code generation when it comes to heap-based and stack-based small memset on arm64. The tested code is already pretty good, notably when it comes to using STP, FP stores, FP immediate generation, and folding one of the stores into a stack spill when possible. The uses of STUR could be improved, and some more pairing could occur. Straying from bzero patterns currently yield suboptimal code, and I expect a variety of small changes could make things way better.
llvm-svn: 341406
The runtime pseudo relocations can't handle the AArch64 format PC
relative addressing in adrp+add/ldr pairs. By using stubs, the potentially
dllimported addresses can be touched up by the runtime pseudo relocation
framework.
Differential Revision: https://reviews.llvm.org/D51452
llvm-svn: 341401
Recent change to deleteDeadBlocksFromLoop was not enough to
fix all the problems related to dead blocks after nontrivial
unswitching of switches.
We need to delete all the dead blocks that were created during
unswitching, otherwise we will keep having problems with phi's
or dead blocks.
This change removes all the dead blocks that are reachable from the loop,
not trying to track whether these blocks are newly created by unswitching
or not. While not completely correct, we are unlikely to get loose but
reachable dead blocks that do not belong to our loop nest.
It does fix all the failures currently known, in particular PR38778.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D51519
llvm-svn: 341398
The tests attempted to check for commuted variants
of these folds, but complexity-based canonicalization
meant we had no coverage for at least 1/2 of the cases.
Also, the folds correctly check hasOneUse(), but there
was no coverage for that.
llvm-svn: 341394
Use MachineOperand::ChangeToImmediate rather than reassigning
MachineOperands to new values created from MachineOperand::CreateImm,
so that their parent pointers are preserved.
This fixes "Instruction has operand with wrong parent set" errors
reported by the MachineVerifier.
llvm-svn: 341389
Summary:
Control height reduction merges conditional blocks of code and reduces the
number of conditional branches in the hot path based on profiles.
if (hot_cond1) { // Likely true.
do_stg_hot1();
}
if (hot_cond2) { // Likely true.
do_stg_hot2();
}
->
if (hot_cond1 && hot_cond2) { // Hot path.
do_stg_hot1();
do_stg_hot2();
} else { // Cold path.
if (hot_cond1) {
do_stg_hot1();
}
if (hot_cond2) {
do_stg_hot2();
}
}
This speeds up some internal benchmarks up to ~30%.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: xbolva00, dmgreen, mehdi_amini, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D50591
llvm-svn: 341386
The -diff option makes it easy to diff dwarf by hiding addresses and
offsets. However not all of them were hidden, which should be fixed by
this patch.
Differential revision: https://reviews.llvm.org/D51593
llvm-svn: 341377
One of the tests is failing 50% of the time when expensive checks are
enabled. Not sure how deep the problem is so just reverting while the
author can investigate so that the bots stop repeatedly failing and
blaming things incorrectly. Will respond with details on the original
commit.
llvm-svn: 341365
Load Hardening.
Wires up the existing pass to work with a proper IR attribute rather
than just a hidden/internal flag. The internal flag continues to work
for now, but I'll likely remove it soon.
Most of the churn here is adding the IR attribute. I talked about this
Kristof Beyls and he seemed at least initially OK with this direction.
The idea of using a full attribute here is that we *do* expect at least
some forms of this for other architectures. There isn't anything
*inherently* x86-specific about this technique, just that we only have
an implementation for x86 at the moment.
While we could potentially expose this as a Clang-level attribute as
well, that seems like a good question to defer for the moment as it
isn't 100% clear whether that or some other programmer interface (or
both?) would be best. We'll defer the programmer interface side of this
for now, but at least get to the point where the feature can be enabled
without relying on implementation details.
This also allows us to do something that was really hard before: we can
enable *just* the indirect call retpolines when using SLH. For x86, we
don't have any other way to mitigate indirect calls. Other architectures
may take a different approach of course, and none of this is surfaced to
user-level flags.
Differential Revision: https://reviews.llvm.org/D51157
llvm-svn: 341363
Also reverts follow-up commits r341343 and r341344.
The primary commit continues to break some build bots even after the
fixes in r341343 for UBSan issues:
http://lab.llvm.org:8011/builders/clang-cmake-aarch64-full/builds/5823
It is also failing for me locally (linux, x86-64).
llvm-svn: 341360
implementing the proposed mitigation technique described in the original
design document.
The idea is to check after calls that the return address used to arrive
at that location is in fact the correct address. In the event of
a mis-predicted return which reaches a *valid* return but not the
*correct* return, this will detect the mismatch much like it would
a mispredicted conditional branch.
This is the last published attack vector that I am aware of in the
Spectre v1 space which is not mitigated by SLH+retpolines. However,
don't read *too* much into that: this is an area of ongoing research
where we expect more issues to be discovered in the future, and it also
makes no attempt to mitigate Spectre v4. Still, this is an important
completeness bar for SLH.
The change here is of course delightfully simple. It was predicated on
cutting support for post-instruction symbols into LLVM which was not at
all simple. Many thanks to Hal Finkel, Reid Kleckner, and Justin Bogner
who helped me figure out how to do a bunch of the complex changes
involved there.
Differential Revision: https://reviews.llvm.org/D50837
llvm-svn: 341358
retpolines.
This implements the core design of tracing the intended target into the
target, checking it, and using that to update the predicate state. It
takes advantage of a few interesting aspects of SLH to make it a bit
easier to implement:
- We already split critical edges with conditional branches, so we can
assume those are gone.
- We already unfolded any memory access in the indirect branch
instruction itself.
I've left hard errors in place to catch if any of these somewhat subtle
invariants get violated.
There is some code that I can factor out and share with D50837 when it
lands, but I didn't want to couple landing the two patches, so I'll do
that in a follow-up cleanup commit if alright.
Factoring out the code to handle different scenarios of materializing an
address remains frustratingly hard. In a bunch of cases you want to fold
one of the cases into an immediate operand of some other instruction,
and you also have both symbols and basic blocks being used which require
different methods on the MI builder (and different operand kinds).
Still, I'll take a stab at sharing at least some of this code in
a follow-up if I can figure out how.
Differential Revision: https://reviews.llvm.org/D51083
llvm-svn: 341356
Summary:
Refactoring done by rL340872 accidentally appeared to be non-NFC, changing the way how
multiple instances of the same pass are handled - aggregation of results by PassName
forced data for multiple instances to be merged together and reported as one line.
Getting back to creating/reporting timers per pass instance.
Reporting was a bit enhanced by counting pass instances and adding #<num> suffix
to the pass description. Note that it is instances that are being counted,
not invocations of them.
time-passes test updated to account for multiple passes being run.
Reviewers: paquette, jhenderson, MatzeB, skatkov
Reviewed By: skatkov
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51535
llvm-svn: 341346
This patch removes the function `expandSCEVIfNeeded` which behaves not as
it was intended. This function tries to make a lookup for exact existing expansion
and only goes to normal expansion via `expandCodeFor` if this lookup hasn't found
anything. As a result of this, if some instruction above the loop has a `SCEVConstant`
SCEV, this logic will return this instruction when asked for this `SCEVConstant` rather
than return a constant value. This is both non-profitable and in some cases leads to
breach of LCSSA form (as in PR38674).
Whether or not it is possible to break LCSSA with this algorithm and with some
non-constant SCEVs is still in question, this is still being investigated. I wasn't
able to construct such a test so far, so maybe this situation is impossible. If it is,
it will go as a separate fix.
Rather than do it, it is always correct to just invoke `expandCodeFor` unconditionally:
it behaves smarter about insertion points, and as side effect of this it will choose a
constant value for SCEVConstants. For other SCEVs it may end up finding a better insertion
point. So it should not be worse in any case.
NOTE: So far the only known case for which this transform may break LCSSA is mapping
of SCEVConstant to an instruction. However there is a suspicion that the entire algorithm
can compromise LCSSA form for other cases as well (yet not proved).
Differential Revision: https://reviews.llvm.org/D51286
Reviewed By: etherzhhb
llvm-svn: 341345
Usage:
llvm-objcopy --compress-debug-sections=zlib foo.o
llvm-objcopy --compress-debug-sections=zlib-gnu foo.o
In both cases the debug section contents is compressed with zlib. In the GNU
style case the header is the "ZLIB" magic string followed by the uint64 big-
endian decompressed size. In the non-GNU mode the header is the
Elf(32|64)_Chdr.
Decompression support is coming soon.
Differential Revision: https://reviews.llvm.org/D49678
llvm-svn: 341342
This patch modifies hasStandardEncoding() / inMicroMipsMode() /
inMips16Mode() methods of the MipsSubtarget class so only one can be
true at any one time. That prevents the selection of microMIPS and MIPS
instructions and patterns that are defined in TableGen files at the same
time. A few new patterns and instruction definitions hae been added to
keep test cases passed.
Differential revision: https://reviews.llvm.org/D51483
llvm-svn: 341338
A ReadAdvance was incorrectly added to the SchedReadWrite list associated with
the following SSE instructions:
sqrtss
sqrtsd
rsqrtss
rcpss
As a consequence, a wrong operand latency was computed for the register operand
used as the base address of the folded load operand.
This patch removes the wrong ReadAdvance, and updates the llvm-mca test cases.
There is still a problem with correctly modeling partial register writes on XMM
registers This other problem is currently tracked here:
https://bugs.llvm.org/show_bug.cgi?id=38813
Differential Revision: https://reviews.llvm.org/D51542
llvm-svn: 341326
According to the standard, for the .debug_names (the "dwarf accelerator
tables"):
> If a subprogram or inlined subroutine is included, and has a
> DW_AT_linkage_name attribute, there will be an additional index entry
> for the linkage name.
For Swift we generate DW_structure_types with a linkage name and the
verifier was incorrectly rejecting this. This patch fixes that by only
considering the linkage name in those particular cases. The test is the
"reduced" debug info of the failing swift test on swift.org.
Differential revision: https://reviews.llvm.org/D51420
llvm-svn: 341311
For instructions that spill/fill to and from multiple frame-indices
in a single instruction, hasStoreToStackSlot and hasLoadFromStackSlot
should return an array of accesses, rather than just the first encounter
of such an access.
This better describes FI accesses for AArch64 (paired) LDP/STP
instructions.
Reviewers: t.p.northover, gberry, thegameg, rengolin, javed.absar, MatzeB
Reviewed By: MatzeB
Differential Revision: https://reviews.llvm.org/D51537
llvm-svn: 341301
When doing some instruction scheduling work, we noticed some missing itineraries.
Before we switch to machine scheduler, those missing itineraries might not have impact to actually scheduling,
because we can still get same latency due to default values.
With machine scheduler, however, itineraries will have impact to scheduling.
eg: NumMicroOps will default to be 0 if there is NO itineraries for specific instruction class.
And most of the instruction class with itineraries will have NumMicroOps default to 1.
This will has impact on the count of RetiredMOps, affects the Pending/Available Queue,
then causing different scheduling or suboptimal scheduling further.
Patch by jsji (Jinsong Ji)
Differential Revision: https://reviews.llvm.org/D51506
llvm-svn: 341293
The fold was implemented for the general case but use-limitation,
but the later constant version which didn't check uses was only
matching splat constants.
llvm-svn: 341292
In lib/CodeGen/LiveDebugVariables.cpp, it uses std::prev(MBBI) to
get DebugValue's SlotIndex. However, the previous instruction may be
also a debug instruction. It could not use a debug instruction to query
SlotIndex in mi2iMap.
Scan all debug instructions and use the first debug instruction to query
SlotIndex for following debug instructions. Only handle DBG_VALUE in
handleDebugValue().
Differential Revision: https://reviews.llvm.org/D50621
llvm-svn: 341289
If we have a pair of binops feeding another pair of binops, rearrange the operands so
the matching pair are together because that allows easy factorization folds to happen
in instcombine:
((X << S) & Y) & (Z << S) --> ((X << S) & (Z << S)) & Y (reassociation)
--> ((X & Z) << S) & Y (factorize shift from 'and' ops optimization)
This is part of solving PR37098:
https://bugs.llvm.org/show_bug.cgi?id=37098
Note that there's an instcombine version of this patch attached there, but we're trying
to make instcombine have less responsibility to improve compile-time efficiency.
For reasons I still don't completely understand, reassociate does this kind of transform
sometimes, but misses everything in my motivating cases.
This patch on its own is gluing an independent cleanup chunk to the end of the existing
RewriteExprTree() loop. We can build on it and do something stronger to better order the
full expression tree like D40049. That might be an alternative to the proposal to add a
separate reassociation pass like D41574.
Differential Revision: https://reviews.llvm.org/D45842
llvm-svn: 341288
Summary:
A follow-up for D49266 / rL337166 + D49497 / rL338044.
This is still the same pattern to check for the [lack of]
signed truncation, but in this case the constants and the predicate
are negated.
https://rise4fun.com/Alive/BDVhttps://rise4fun.com/Alive/n7Z
Reviewers: spatel, craig.topper, RKSimon, javed.absar, efriedma, dmgreen
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51532
llvm-svn: 341287
The 'rol Rd' instruction is equivalent to 'adc Rd'.
This caused compile warnings from tablegen because of conflicting bits
shared between each instruction.
llvm-svn: 341275
Leverage existing logic in constant hoisting pass to transform constant GEP
expressions sharing the same base global variable. Multi-dimensional GEPs are
rewritten into single-dimensional GEPs.
Differential Revision: https://reviews.llvm.org/D51396
llvm-svn: 341269
ModuleCount = InstrCount was incorrect. It should have been
InstrCount = ModuleCount. This was making it emit an extra, incorrect remark
for Print Module IR.
The test didn't catch this, because it didn't ensure that the only remark
output was from the desired pass. So, it was possible to have an extra remark
come through and not fail. Updated the test so that we ensure that the last
remark that's output comes from the desired pass. This is done by ensuring
that whatever is being read after the last remark is YAML output rather than
some incorrect garbage.
llvm-svn: 341267
These intrinsics use the same implementation as PTEST intrinsics, but use vXi1 vectors.
New clang builtins will be accompanying them shortly.
llvm-svn: 341259
Following D50807, and heading towards D50664, this intermediary change does the following:
1. Upgrade all custom Error types in llvm/trunk/lib/DebugInfo/ to use the new StringError behavior (D50807).
2. Implement std::is_error_code_enum and make_error_code() for DebugInfo error enumerations.
3. Rename GenericError -> PDBError (the file will be renamed in a subsequent commit)
4. Update custom error messages to follow the same formatting: (\w\s*)+\.
5. Keep generic "file not found" (ENOENT) errors as they are in PDB code. Previously, there used to be a custom enumeration for that purpose.
6. Remove a few extraneous LF in log() implementations. Printing LF is a responsability at a higher level, not at the error level.
Differential Revision: https://reviews.llvm.org/D51499
llvm-svn: 341228
This patch recognizes shuffles that shift elements and fill with zeros. I've copied and modified the shift matching code we use for normal vector registers to do this. I'm not sure if there's a good way to share more of this code without making the existing function more complex than it already is.
This will be used to enable kshift intrinsics in clang.
Differential Revision: https://reviews.llvm.org/D51401
llvm-svn: 341227
The presence of a ReadAdvance for input operand #0 is problematic
because it changes the input latency of the register used as the base address
for the folded load.
A broadcast cannot start executing if the load address hasn't been computed yet.
In the llvm-mca example, the VBROADCASTSS is dependent on the address generated
by the LEAQ. That means, it cannot start until LEAQ reaches the write-back
stage. If we apply ReadAdvance, then we wrongly assume that the load can start 3
cycles in advance.
Differential Revision: https://reviews.llvm.org/D51534
llvm-svn: 341222
The `mtc1` and `mfc1` definitions in the MipsInstrFPU.td have MMRel,
but do not have StdMMR6Rel tags. When these instructions are emitted
for microMIPS R6 targets, `Mips::MipsR62MicroMipsR6` nor
`Mips::Std2MicroMipsR6` cannot find correct op-codes and as a result the
backend uses mips32 variant of the instructions encoding.
The patch fixes this problem by adding the StdMMR6Rel tag and check
instructions encoding in the test case.
Differential revision: https://reviews.llvm.org/D51482
llvm-svn: 341221
The intention is to enable the extract_vector_elt load combine,
and doing this for other operations interferes with more
useful optimizations on vectors.
Handle any type of load since in principle we should do the
same combine for the various load intrinsics.
llvm-svn: 341219
According to the timeline view, sqrtss/sd/rcpss start executing before the load
address for the memory operand is available.
This problem is caused by the presence of a ReadAfterLd (a ReadAdvance). Those
unary operations should not specify a ReadAdvance at all.
llvm-svn: 341213
When using -g and -dsym, llvm-objdump opens the dsym file and keeps the
MachOObjectFile alive, while the memory buffer that the MachOObjectFile
was based on gets destroyed.
Differential Revision: https://reviews.llvm.org/D51365
llvm-svn: 341209
This patch fixes the number of micro opcodes, and processor resource cycles for
the following AVX instructions:
vinsertf128rr/rm
vperm2f128rr/rm
vbroadcastf128
Tests have been regenerated using the usual scripts in the llvm/utils directory.
Differential Revision: https://reviews.llvm.org/D51492
llvm-svn: 341185
The runtime pseudo relocations can't handle the ARM format embedded
addresses in movw/movt pairs. By using stubs, the potentially
dllimported addresses can be touched up by the runtime pseudo relocation
framework.
Differential Revision: https://reviews.llvm.org/D51450
llvm-svn: 341176
This will cover the (v2i32 (setcc v2f32)) case in replaceNodeResults. That code shouldn't be needed at all in this mode. A future patch will skip it.
llvm-svn: 341171
It has essentially the same benefit it has on 64-bit ARM: it
substantially reduces the number of constants used by large GEP
operations. Seems to be generally helpful across a few different
codebases I've tried.
Differential Revision: https://reviews.llvm.org/D51462
llvm-svn: 341136