--push-state implemented in this patch saves the states of --as-needed,
--whole-archive and --static. It saves less number of flags than GNU linkers.
Since even GNU linkers save different flags, no one seems to care about the
details. In this patch, I tried to save the minimal number of flags to not
complicate the implementation and the siutation.
I'm not personally happy about adding the --{push,pop}-state flags though.
That options seem too hacky to me. However, gcc started using the options
since GCC 8 when GNU ld is available at the build time. Therefore, lld
is no longer a drop-in replacmenet for GNU linker for that machine
without supporting the flags.
Fixes https://bugs.llvm.org/show_bug.cgi?id=34567
Differential Revision: https://reviews.llvm.org/D47542
llvm-svn: 333646
Previously, we had a loop to iterate over options starting with
`--plugin-opt=` and parse them by hand. But we can make OptTable
do that job for us.
Differential Revision: https://reviews.llvm.org/D47167
llvm-svn: 332935
The --keep-unique <symbol> option is taken from gold. The intention is that
<symbol> will be prevented from being folded by ICF. Although not
specifically mentioned in the documentation <symbol> only matches
global symbols, with a warning if the symbol is not found.
The implementation finds the Section defining <symbol> and removes it from
the set of sections considered for ICF.
Differential Revision: https://reviews.llvm.org/D46755
llvm-svn: 332332
Separate output sections for selected text section prefixes to enable TLB optimizations and for readablilty.
Differential Revision: https://reviews.llvm.org/D45841
llvm-svn: 331823
Our promise is that as long as there's no fatal error (i.e. broken
file is given to the linker), our main function returns to the caller.
So we can't use exit() in the regular code path.
Differential Revision: https://reviews.llvm.org/D46442
llvm-svn: 331690
Android AOSP has started specifying -m aarch64_elf64_le_vec as supported
by gold and BFD. This is a simple change to add the emulation so that LLD
doesn't immediately error when used as a linker in an AOSP build.
Differential Revision: https://reviews.llvm.org/D46429
llvm-svn: 331521
Now that getSectionPiece is fast (uses a hash) it is probably OK to
split merge sections early.
The reason I want to do this is to split eh_frame sections in the same
place.
This does mean that we have to decompress early. Given that the only
compressed sections are debug info, I don't think we are missing much.
It is a small improvement: 0.5% on the geometric mean.
llvm-svn: 331058
The fix is to copy Used when replacing the symbol.
Original message:
Do not keep shared symbols created from garbage-collected eliminated DSOs.
If all references to a DSO happen to be weak, and if the DSO is
specified with --as-needed, the DSO is not added to DT_NEEDED.
If that happens, we also need to eliminate shared symbols created
from the DSO. Otherwise, they become dangling references that point
to non-exsitent DSO.
Fixes https://bugs.llvm.org/show_bug.cgi?id=36991
Differential Revision: https://reviews.llvm.org/D45536
llvm-svn: 330788
This is causing large numbers of Chromium test executables to crash on
shutdown. The relevant symbol seems to be __cxa_finalize, which gets
removed from the dynamic symbol table for some of the support libraries.
llvm-svn: 330164
If all references to a DSO happen to be weak, and if the DSO is
specified with --as-needed, the DSO is not added to DT_NEEDED.
If that happens, we also need to eliminate shared symbols created
from the DSO. Otherwise, they become dangling references that point
to non-exsitent DSO.
Fixes https://bugs.llvm.org/show_bug.cgi?id=36991
Differential Revision: https://reviews.llvm.org/D45536
llvm-svn: 329960
I'm proposing a new command line flag, --warn-backrefs in this patch.
The flag and the feature proposed below don't exist in GNU linkers
nor the current lld.
--warn-backrefs is an option to detect reverse or cyclic dependencies
between static archives, and it can be used to keep your program
compatible with GNU linkers after you switch to lld. I'll explain the
feature and why you may find it useful below.
lld's symbol resolution semantics is more relaxed than traditional
Unix linkers. Therefore,
ld.lld foo.a bar.o
succeeds even if bar.o contains an undefined symbol that have to be
resolved by some object file in foo.a. Traditional Unix linkers
don't allow this kind of backward reference, as they visit each
file only once from left to right in the command line while
resolving all undefined symbol at the moment of visiting.
In the above case, since there's no undefined symbol when a linker
visits foo.a, no files are pulled out from foo.a, and because the
linker forgets about foo.a after visiting, it can't resolve
undefined symbols that could have been resolved otherwise.
That lld accepts more relaxed form means (besides it makes more
sense) that you can accidentally write a command line or a build
file that works only with lld, even if you have a plan to
distribute it to wider users who may be using GNU linkers. With
--check-library-dependency, you can detect a library order that
doesn't work with other Unix linkers.
The option is also useful to detect cyclic dependencies between
static archives. Again, lld accepts
ld.lld foo.a bar.a
even if foo.a and bar.a depend on each other. With --warn-backrefs
it is handled as an error.
Here is how the option works. We assign a group ID to each file. A
file with a smaller group ID can pull out object files from an
archive file with an equal or greater group ID. Otherwise, it is a
reverse dependency and an error.
A file outside --{start,end}-group gets a fresh ID when
instantiated. All files within the same --{start,end}-group get the
same group ID. E.g.
ld.lld A B --start-group C D --end-group E
A and B form group 0, C, D and their member object files form group
1, and E forms group 2. I think that you can see how this group
assignment rule simulates the traditional linker's semantics.
Differential Revision: https://reviews.llvm.org/D45195
llvm-svn: 329636
I tried a few different designs to find a way to implement it without
too much hassle and settled down with this. Unlike before, object files
given as arguments for --just-symbols are handled as object files, with
an exception that their section tables are handled as if they were all
null.
Differential Revision: https://reviews.llvm.org/D42025
llvm-svn: 328852
This is an option to print out a table of symbols and filenames.
The output format of this option is the same as GNU, so that it can be
processed by the same scripts as before after migrating from GNU to lld.
This option is mildly useful; we can live without it. But it is pretty
convenient sometimes, and it can be implemented in 50 lines of code, so
I think lld should support this option.
Differential Revision: https://reviews.llvm.org/D44336
llvm-svn: 327565
This implements INSERT AFTER in a following way:
During reading scripts it collects all insert statements.
After we done and read all files it inserts statements into script commands list.
With that:
* Rest of code does know nothing about INSERT.
* Approach is straightforward and have no visible limitations.
* It is also easy to support INSERT BEFORE (was seen in clang code once).
* Should work for PR35877 and similar cases.
Cons:
* It assumes we have "main" scripts that describes sections.
Differential revision: https://reviews.llvm.org/D43468
llvm-svn: 327003
GNU linkers by convention supports both `--foo bar` and `--foo=bar` styles
for all long options that take arguments.
Differential Revision: https://reviews.llvm.org/D43972
llvm-svn: 326506
This should resolve the issue that lld build fails in some hosts
that uses case-insensitive file system.
Differential Revision: https://reviews.llvm.org/D43788
llvm-svn: 326339
It should be possible to resolve undefined symbols in dynamic libraries
using symbols defined in a linker script.
Differential Revision: https://reviews.llvm.org/D43011
llvm-svn: 326176
This patch provides migitation for CVE-2017-5715, Spectre variant two,
which affects the P5600 and P6600. It implements the LLD part of
-z hazardplt. Like the Clang part of this patch, I have opted for that
specific option name in case alternative migitation methods are required
in the future.
The mitigation strategy suggested by MIPS for these processors is to use
hazard barrier instructions. 'jalr.hb' and 'jr.hb' are hazard
barrier variants of the 'jalr' and 'jr' instructions respectively.
These instructions impede the execution of instruction stream until
architecturally defined hazards (changes to the instruction stream,
privileged registers which may affect execution) are cleared. These
instructions in MIPS' designs are not speculated past.
These instructions are defined by the MIPS32R2 ISA, so this mitigation
method is not compatible with processors which implement an earlier
revision of the MIPS ISA.
For LLD, this changes PLT stubs to use 'jalr.hb' and 'jr.hb'.
Reviewers: atanasyan, ruiu
Differential Revision: https://reviews.llvm.org/D43488
llvm-svn: 325647
Previously wasm used a separate header to declare markLive
and ELF used to declare ICF. This change makes each backend
consistently declare these in their own headers.
Differential Revision: https://reviews.llvm.org/D43529
llvm-svn: 325631
We are running lld tests with "--full-shutdown" option because we don't
want to call _exit() in lld if it is running tests. Regular shutdown
is needed for leak sanitizer.
This patch changes the way how we tell lld that it is running tests.
Now "--full-shutdown" is removed, and LLD_IN_TEST environment variable
is used instead.
This patch enables full shutdown on all ports, e.g. ELF, COFF and wasm.
Previously, we enabled it only for ELF.
Differential Revision: https://reviews.llvm.org/D43410
llvm-svn: 325413
There seems to be no reason to collect this list of symbols.
Also fix a bug where --exclude-libs would apply to all symbols that
appear in an archive's symbol table, even if the relevant archive
member was not added to the link.
Differential Revision: https://reviews.llvm.org/D43369
llvm-svn: 325380
Summary:
This follows up on r321889 where writing of Elf_Rel addends was partially
moved to RelocationBaseSection. This patch ensures that the addends are
always written to the output section when a input section uses RELA but the
output is REL.
Differential Revision: https://reviews.llvm.org/D42843
llvm-svn: 325328
When we are emitting a relocatable output, we should keep the original
symbol name including "@" part. Previously, we drop that part unconditionally
which resulted in dropping versions from symbols.
Differential Revision: https://reviews.llvm.org/D43307
llvm-svn: 325204
This patch addresses a minor compatibility issue with GNU linkers.
Previously, --export-dynamic-symbol is completely ignored if you
pass --export-dynamic together.
Differential Revision: https://reviews.llvm.org/D43266
llvm-svn: 325152
There are a number of different situations when symbols are requested
to be ordered in the --symbol-ordering-file that cannot be ordered for
some reason. To assist with identifying these symbols, and either
tidying up the order file, or the inputs, a number of warnings have
been added. As some users may find these warnings unhelpful, due to how
they use the symbol ordering file, a switch has also been added to
disable these warnings.
The cases where we now warn are:
* Entries in the order file that don't correspond to any symbol in the input
* Undefined symbols
* Absolute symbols
* Symbols imported from shared objects
* Symbols that are discarded, due to e.g. --gc-sections or /DISCARD/ linker script sections
* Multiple of the same entry in the order file
Reviewed by: rafael, ruiu
Differential Revision: https://reviews.llvm.org/D42475
llvm-svn: 325125
This is for compatiblity with GNU gold. GNU gold tries to resolve
symbols specified by --export-dynamic-symbol. So, if a symbol specified
by --export-dynamic-symbol is in an archive file, lld's result is
currently different from gold's.
Interestingly, that behavior is different for --dynamic-list.
I added a new test to ensure that.
Differential Revision: https://reviews.llvm.org/D43103
llvm-svn: 324752
When you omit an argument, most options fall back to their defaults.
For example, --color-diagnostics is a synonym for --color-diagnostics=auto.
We don't have a way to specify the default choice for --build-id, so we
can't describe --build-id (without an argument) in that way.
This patch adds "fast" for the default build-id choice.
Differential Revision: https://reviews.llvm.org/D43032
llvm-svn: 324502
Previously we ignored -plugin-opt=mcpu=<xxx>
and the only way to set CPU string was to pass
-mllvm -mcpu=<xxx>
Though clang may pass it with use of plugin options:
-plugin-opt=mcpu=x86-64
Since we are trying to be compatible in command line
with gold plugin, seems we should support it too.
Differential revision: https://reviews.llvm.org/D42956
llvm-svn: 324459
With fix:
Keep logic that ignores -plugin-opt=mcpu=x86-64 -plugin-opt=thinlto,
add checks for those to testcases.
Original commit message:
[ELF] - Use InitTargetOptionsFromCodeGenFlags/ParseCommandLineOptions for parsing LTO options.
gold plugin uses InitTargetOptionsFromCodeGenFlags +
ParseCommandLineOptions for parsing LTO options.
Patch do the same change for LLD.
Such change helps to avoid parsing/whitelisting LTO
plugin options again on linker side, what can help LLD
to automatically support new -plugin-opt=xxx options
passed.
Differential revision: https://reviews.llvm.org/D42733
llvm-svn: 324340
gold plugin uses InitTargetOptionsFromCodeGenFlags +
ParseCommandLineOptions for parsing LTO options.
Patch do the same change for LLD.
Such change helps to avoid parsing/whitelisting LTO
plugin options again on linker side, what can help LLD
to automatically support new -plugin-opt=xxx options
passed.
Differential revision: https://reviews.llvm.org/D42733
llvm-svn: 324322
When using Elf_Rela every tool should use the addend in the
relocation.
We have --apply-dynamic-relocs to work around bugs in tools that don't
do that.
The default value of --apply-dynamic-relocs should be false to make
sure these bugs are more easily found in the future.
llvm-svn: 324264
When resolving dynamic RELA relocations the addend is taken from the
relocation and not the place being relocated. Accordingly lld does not
write the addend field to the place like it would for a REL relocation.
Unfortunately there is some system software, in particlar dynamic loaders
such as Bionic's linker64 that use the value of the place prior to
relocation to find the offset that they have been loaded at. Both gold
and bfd control this behavior with the --[no-]apply-dynamic-relocs option.
This change implements the option and defaults it to true for compatibility
with gold and bfd.
Differential Revision: https://reviews.llvm.org/D42797
llvm-svn: 324221
Initially LLD generates Elf_Rel relocations for O32 ABI and Elf_Rela
relocations for N32 / N64 ABIs. In other words, format of input and
output relocations was always the same. Now LLD generates all output
relocations using Elf_Rel format only. It conforms to ABIs requirement.
The patch suggested by Alexander Richardson.
llvm-svn: 324064
--nopie was a typo. GNU gold doesn't recognize it. It is also
inconsistent with other options that have --foo and --no-foo.
Differential Revision: https://reviews.llvm.org/D42825
llvm-svn: 324043
Currently ICF information is output through stderr if the "--verbose"
flag is used. This differs to Gold for example, which uses an explicit
flag to output this to stdout. This commit adds the
"--print-icf-sections" and "--no-print-icf-sections" flags and changes
the output message format for clarity and consistency with
"--print-gc-sections". These messages are still output to stderr if
using the verbose flag. However to avoid intermingled message output to
console, this will not occur when the "--print-icf-sections" flag is
used.
Existing tests have been modified to expect the new message format from
stderr.
Patch by Owen Reynolds.
Differential Revision: https://reviews.llvm.org/D42375
Reviewers: ruiu, rafael
Reviewed by:
llvm-svn: 323976
Currently symbols assigned or created by linkerscript are not processed early
enough. As a result it is not possible to version them or assign any other flags/properties.
Patch creates Defined symbols for -defsym and linkerscript symbols early,
so that issue from above can be addressed.
It is based on Rafael Espindola's version of D38239 patch.
Fixes PR34121.
Differential revision: https://reviews.llvm.org/D41987
llvm-svn: 323729
Summary:
First, we need to explain the core of the vulnerability. Note that this
is a very incomplete description, please see the Project Zero blog post
for details:
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
The basis for branch target injection is to direct speculative execution
of the processor to some "gadget" of executable code by poisoning the
prediction of indirect branches with the address of that gadget. The
gadget in turn contains an operation that provides a side channel for
reading data. Most commonly, this will look like a load of secret data
followed by a branch on the loaded value and then a load of some
predictable cache line. The attacker then uses timing of the processors
cache to determine which direction the branch took *in the speculative
execution*, and in turn what one bit of the loaded value was. Due to the
nature of these timing side channels and the branch predictor on Intel
processors, this allows an attacker to leak data only accessible to
a privileged domain (like the kernel) back into an unprivileged domain.
The goal is simple: avoid generating code which contains an indirect
branch that could have its prediction poisoned by an attacker. In many
cases, the compiler can simply use directed conditional branches and
a small search tree. LLVM already has support for lowering switches in
this way and the first step of this patch is to disable jump-table
lowering of switches and introduce a pass to rewrite explicit indirectbr
sequences into a switch over integers.
However, there is no fully general alternative to indirect calls. We
introduce a new construct we call a "retpoline" to implement indirect
calls in a non-speculatable way. It can be thought of loosely as
a trampoline for indirect calls which uses the RET instruction on x86.
Further, we arrange for a specific call->ret sequence which ensures the
processor predicts the return to go to a controlled, known location. The
retpoline then "smashes" the return address pushed onto the stack by the
call with the desired target of the original indirect call. The result
is a predicted return to the next instruction after a call (which can be
used to trap speculative execution within an infinite loop) and an
actual indirect branch to an arbitrary address.
On 64-bit x86 ABIs, this is especially easily done in the compiler by
using a guaranteed scratch register to pass the target into this device.
For 32-bit ABIs there isn't a guaranteed scratch register and so several
different retpoline variants are introduced to use a scratch register if
one is available in the calling convention and to otherwise use direct
stack push/pop sequences to pass the target address.
This "retpoline" mitigation is fully described in the following blog
post: https://support.google.com/faqs/answer/7625886
We also support a target feature that disables emission of the retpoline
thunk by the compiler to allow for custom thunks if users want them.
These are particularly useful in environments like kernels that
routinely do hot-patching on boot and want to hot-patch their thunk to
different code sequences. They can write this custom thunk and use
`-mretpoline-external-thunk` *in addition* to `-mretpoline`. In this
case, on x86-64 thu thunk names must be:
```
__llvm_external_retpoline_r11
```
or on 32-bit:
```
__llvm_external_retpoline_eax
__llvm_external_retpoline_ecx
__llvm_external_retpoline_edx
__llvm_external_retpoline_push
```
And the target of the retpoline is passed in the named register, or in
the case of the `push` suffix on the top of the stack via a `pushl`
instruction.
There is one other important source of indirect branches in x86 ELF
binaries: the PLT. These patches also include support for LLD to
generate PLT entries that perform a retpoline-style indirection.
The only other indirect branches remaining that we are aware of are from
precompiled runtimes (such as crt0.o and similar). The ones we have
found are not really attackable, and so we have not focused on them
here, but eventually these runtimes should also be replicated for
retpoline-ed configurations for completeness.
For kernels or other freestanding or fully static executables, the
compiler switch `-mretpoline` is sufficient to fully mitigate this
particular attack. For dynamic executables, you must compile *all*
libraries with `-mretpoline` and additionally link the dynamic
executable and all shared libraries with LLD and pass `-z retpolineplt`
(or use similar functionality from some other linker). We strongly
recommend also using `-z now` as non-lazy binding allows the
retpoline-mitigated PLT to be substantially smaller.
When manually apply similar transformations to `-mretpoline` to the
Linux kernel we observed very small performance hits to applications
running typical workloads, and relatively minor hits (approximately 2%)
even for extremely syscall-heavy applications. This is largely due to
the small number of indirect branches that occur in performance
sensitive paths of the kernel.
When using these patches on statically linked applications, especially
C++ applications, you should expect to see a much more dramatic
performance hit. For microbenchmarks that are switch, indirect-, or
virtual-call heavy we have seen overheads ranging from 10% to 50%.
However, real-world workloads exhibit substantially lower performance
impact. Notably, techniques such as PGO and ThinLTO dramatically reduce
the impact of hot indirect calls (by speculatively promoting them to
direct calls) and allow optimized search trees to be used to lower
switches. If you need to deploy these techniques in C++ applications, we
*strongly* recommend that you ensure all hot call targets are statically
linked (avoiding PLT indirection) and use both PGO and ThinLTO. Well
tuned servers using all of these techniques saw 5% - 10% overhead from
the use of retpoline.
We will add detailed documentation covering these components in
subsequent patches, but wanted to make the core functionality available
as soon as possible. Happy for more code review, but we'd really like to
get these patches landed and backported ASAP for obvious reasons. We're
planning to backport this to both 6.0 and 5.0 release streams and get
a 5.0 release with just this cherry picked ASAP for distros and vendors.
This patch is the work of a number of people over the past month: Eric, Reid,
Rui, and myself. I'm mailing it out as a single commit due to the time
sensitive nature of landing this and the need to backport it. Huge thanks to
everyone who helped out here, and everyone at Intel who helped out in
discussions about how to craft this. Also, credit goes to Paul Turner (at
Google, but not an LLVM contributor) for much of the underlying retpoline
design.
Reviewers: echristo, rnk, ruiu, craig.topper, DavidKreitzer
Subscribers: sanjoy, emaste, mcrosier, mgorny, mehdi_amini, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D41723
llvm-svn: 323155
Previously we always handled -defsym after other commands in command line.
That made impossible to overload values set by -defsym from linker script:
test.script:
foo = 0x22;
-defsym=foo=0x11 -script t.script
would always set foo to 0x11.
That is inconstent with common logic which allows to override command line
options. it is inconsistent with bfd behavior and seems breaks assumption that
-defsym is the same as linker script assignment, as -defsyms always handled out of
command line order.
Patch fixes the handling order.
Differential revision: https://reviews.llvm.org/D42054
llvm-svn: 322625
When we have --icf=safe we should be able to define --icf=all as a
shorthand for --icf=safe --ignore-function-address-equality.
For now --ignore-function-address-equality is used only to control
access to non preemptable symbols in shared libraries.
llvm-svn: 322152
If using a version script with a `local: *` in it, symbols in shared
libraries will still get default visibility if another shared library on
the link line has an undefined reference to the symbol. This is quite
surprising. Neither bfd nor gold have this behavior when linking a
shared library, and none of LLD's tests fail without this behavior, so
it seems safe to limit scanShlibUndefined to executables.
As far as executables are concerned, gold doesn't do any automatic
default visibility marking, and bfd issues a link error about a shared
library having a reference to a hidden symbol rather than silently
giving that symbol default visibility. I think bfd's behavior here is
preferable to LLD's, but that's something to be considered in a
follow-up.
Differential Revision: https://reviews.llvm.org/D41524
llvm-svn: 321578
We normally avoid "switch (Config->EKind)", but in this case I think
it is worth it.
It is only executed when there is an error and it allows detemplating
a lot of code.
llvm-svn: 321404
The ARM.exidx section contains a table of 8-byte entries with the first
word of each entry an offset to the function it describes and the second
word instructions for unwinding if an exception is thrown from that
function. The SHF_LINK_ORDER processing will order the table in ascending
order of the functions described by the exception table entries. As the
address range of an exception table entry is terminated by the next table
entry, it is possible to merge consecutive table entries that have
identical unwind instructions.
For this implementation we define a table entry to be identical if:
- Both entries are the special EXIDX_CANTUNWIND.
- Both entries have the same inline unwind instructions.
We do not attempt to establish if table entries that are references to
.ARM.extab sections are identical.
This implementation works at a granularity of a single .ARM.exidx
InputSection. If all entries in the InputSection are identical to the
previous table entry we can remove the InputSection. A more sophisticated
but more complex implementation would rewrite InputSection contents so that
duplicates within a .ARM.exidx InputSection can be merged.
Differential Revision: https://reviews.llvm.org/D40967
llvm-svn: 320803
An internal linker has support for merging identical data and in some
cases it can be a significant win.
This is behind an off by default flag so it has to be requested
explicitly.
llvm-svn: 320448
This fixes pr35570.
We were creating these symbols after parsing version scripts, so they
could not be versioned.
We cannot move the version script parsing later because we need it for
lto.
One option is to move both addReservedSymbols and
createSyntheticSections earlier. The disadvantage is that some
sections created by createSyntheticSections replace other input
sections. For example, gdb index replaces .debug_gnu_pubnames, so it
wants to run after gc sections so that it can set S->Live to false.
What this patch does instead is to move just the ElfHeader creation
early.
llvm-svn: 320390
This patch is to rename check CHECK and make it a C macro, so that
we can evaluate the second argument lazily.
Differential Revision: https://reviews.llvm.org/D40915
llvm-svn: 319974
Add a new file AArch64ErrataFix.cpp that implements the logic to scan for
the Cortex-A53 Erratum 843419. This involves finding all the executable
code, disassembling the instructions that might trigger the erratum and
reporting a message if the sequence is detected.
At this stage we do not attempt to fix the erratum, this functionality
will be added in a later patch. See D36749 for proposal.
Differential Revision: https://reviews.llvm.org/D36742
llvm-svn: 319780
Previously, lld exited with an error status if the only option given to
the command was -v. GNU linkers gracefully exit in that case. This patch
makes lld behave like GNU.
Note that even with this patch, lld's -v and --version options behave
slightly differently than GNU linkers' counterparts. For example,
if you run `ld.bfd -v -v`, the version string is printed out twice.
But that is an edge case that I don't think we need to take care of.
Fixes https://bugs.llvm.org/show_bug.cgi?id=31582
Differential Revision: https://reviews.llvm.org/D40810
llvm-svn: 319717
The ELF spec says
Symbols with section index SHN_COMMON may appear only in relocatable
objects.
Currently lld can produce file that break that requirement.
llvm-svn: 319473
lld assumes some ARM features that are not available in all Arm
processors. In particular:
- The blx instruction present for interworking.
- The movt/movw instructions are used in Thunks.
- The J1=1 J2=1 encoding of branch immediates to improve Thumb wide
branch range are assumed to be present.
This patch reads the ARM Attributes section to check for the
architecture the object file was compiled with. If none of the objects
have an architecture that supports either of these features a warning
will be given. This is most likely to affect armv6 as used in the first
Raspberry Pi.
Differential Revision: https://reviews.llvm.org/D36823
llvm-svn: 319169
Summary:
This matches the behaviour of ld.bfd:
https://sourceware.org/binutils/docs/ld/Options.html#Options
If scriptfile does not exist in the current directory, ld looks for it in
the directories specified by any preceding '-L' options. Multiple '-T'
options accumulate.
Reviewers: ruiu, grimar
Reviewed By: ruiu, grimar
Subscribers: emaste, llvm-commits
Differential Revision: https://reviews.llvm.org/D40129
llvm-svn: 318655
Common symbols are now represented with a DefinedRegular that points
to a BssSection, even during symbol resolution.
Differential Revision: https://reviews.llvm.org/D39666
llvm-svn: 317447
r317396 changed the way how we handle the -defsym option. The option is
now handled using the infrastructure for the linker script.
We used to handle both -defsym and -wrap using the same set of functions
in the symbol table. Now, we don't need to do that.
This patch rewrites the functions so that they become more straightforward.
The new functions directly handle -wrap rather than abstract it.
llvm-svn: 317426
Currently LLD tries to use information about functions and variables location
taking it from debug sections. When --strip-* is given we discard such sections
and that breaks error reporting.
Patch stops discarding such sections and just removes them from InputSections list.
Differential revision: https://reviews.llvm.org/D39550
llvm-svn: 317405
Now that we have only SymbolBody as the symbol class. So, "SymbolBody"
is a bit strange name now. This is a mechanical change generated by
perl -i -pe s/SymbolBody/Symbol/g $(git grep -l SymbolBody lld/ELF lld/COFF)
nd clang-format-diff.
Differential Revision: https://reviews.llvm.org/D39459
llvm-svn: 317370