This s_mov_b32 will write to a virtual register from the M0Reg
class and all the ds instructions now take an extra M0Reg explicit
argument.
This change is necessary to prevent issues with the scheduler
mixing together instructions that expect different values in the m0
registers.
llvm-svn: 222583
A register operand that has a common sub-class with its instruction's
defined register class is not always legal. For example,
SReg_32 and M0Reg both have a common sub-class, but we can't
use an SReg_32 in instructions that expect a M0Reg.
This prevents the llvm.SI.sendmsg.ll test from failing when the fold
operand pass is added.
llvm-svn: 222368
This partially makes up for not having address spaces
used for alias analysis in some simple cases.
This is not yet enabled by default so shouldn't change anything yet.
llvm-svn: 222286
This should expose more of the actually used VALU
instructions to the machine optimization passes.
This also should help getting i1 handling into a better state.
For not entirly understood reasons, this fixes the split-scalar-i64-add.ll
test where a 64-bit add would only partially be moved to the VALU
resulting in use of undefined VCC.
llvm-svn: 222256
This gets the correct NaN behavior based on the compare type
the hardware uses. This now passes the new piglit test I have
for this on SI.
Add stricter tests for the operand order.
llvm-svn: 222079
If we have spilled the value of the m0 register, then we need to restore
it with v_readlane_b32 to a regular sgpr, because v_readlane_b32 can't
write to m0.
v_readlane_b32 can't write to m0, so
llvm-svn: 222036
If a function is just an unreachable, this would hit a
"this is not a MachO target" assertion because of setting
HasSubsectionViaSymbols.
llvm-svn: 221920
e.g. v_mad_f32 a, b, c -> v_mad_f32 b, a, c
This simplifies matching v_madmk_f32.
This looks somewhat surprising, but it appears to be
OK to do this. We can commute src0 and src1 in all
of these instructions, and that's all that appears
to matter.
llvm-svn: 221910
This matches the format produced by the AMD proprietary driver.
//==================================================================//
// Shell script for converting .ll test cases: (Pass the .ll files
you want to convert to this script as arguments).
//==================================================================//
; This was necessary on my system so that A-Z in sed would match only
; upper case. I'm not sure why.
export LC_ALL='C'
TEST_FILES="$*"
MATCHES=`grep -v Patterns SIInstructions.td | grep -o '"[A-Z0-9_]\+["e]' | grep -o '[A-Z0-9_]\+' | sort -r`
for f in $TEST_FILES; do
# Check that there are SI tests:
grep -q -e 'verde' -e 'bonaire' -e 'SI' -e 'tahiti' $f
if [ $? -eq 0 ]; then
for match in $MATCHES; do
sed -i -e "s/\([ :]$match\)/\L\1/" $f
done
# Try to get check lines with partial instruction names
sed -i 's/\(;[ ]*SI[A-Z\\-]*: \)\([A-Z_0-9]\+\)/\1\L\2/' $f
fi
done
sed -i -e 's/bb0_1/BB0_1/g' ../../../test/CodeGen/R600/infinite-loop.ll
sed -i -e 's/SI-NOT: bfe/SI-NOT: {{[^@]}}bfe/g'../../../test/CodeGen/R600/llvm.AMDGPU.bfe.*32.ll ../../../test/CodeGen/R600/sext-in-reg.ll
sed -i -e 's/exp_IEEE/EXP_IEEE/g' ../../../test/CodeGen/R600/llvm.exp2.ll
sed -i -e 's/numVgprs/NumVgprs/g' ../../../test/CodeGen/R600/register-count-comments.ll
sed -i 's/\(; CHECK[-NOT]*: \)\([A-Z_0-9]\+\)/\1\L\2/' ../../../test/CodeGen/R600/select64.ll ../../../test/CodeGen/R600/sgpr-copy.ll
//==================================================================//
// Shell script for converting .td files (run this last)
//==================================================================//
export LC_ALL='C'
sed -i -e '/Patterns/!s/\("[A-Z0-9_]\+[ "e]\)/\L\1/g' SIInstructions.td
sed -i -e 's/"EXP/"exp/g' SIInstrInfo.td
llvm-svn: 221350
We need to figure out how to track ptrtoint values all the
way until result is converted back to a pointer in order
to correctly rewrite the pointer type.
llvm-svn: 220997
The previous tests claimed to test constant offsets in the function name,
but the tests weren't actually testing them.
Clone the tests, and do testing of all combinations of the following:
1) with/without constant pointer offset
2) 32/64-bit addressing modes
3) Usage and non-usage of the return value from the atomicrmw
Reviewed-by: Matt Arsenault <matthew.arsenault@amd.com>
llvm-svn: 220103
The function name now matches what it's actually testing.
Signed-off-by: Aaron Watry <awatry@gmail.com>
Reviewed-by: Matt Arsenault <matthew.arsenault@amd.com>
llvm-svn: 220102
v2: use dyn_cast
fixup comments
v3: use cast
Reviewed-by: Matt Arsenault <arsenm2@gmail.com>
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 220044
The SelectDS1Addr1Offset complex pattern always tries to store constant
lds pointers in the offset operand and store a zero value in the addr operand.
Since the addr operand does not accept immediates, the zero value
needs to first be copied to a register.
This newly created zero value will not go through normal instruction
selection, so we need to manually insert a V_MOV_B32_e32 in the complex
pattern.
This bug was hidden by the fact that if there was another zero value
in the DAG that had not been selected yet, then the CSE done by the DAG
would use the unselected node for the addr operand rather than the one
that was just created. This would lead to the zero value being selected
and the DAG automatically inserting a V_MOV_B32_e32 instruction.
llvm-svn: 219848
This effectively reverts revert 219707. After fixing the test to work with
new function name format and renamed intrinsic.
Reviewed-by: Tom Stellard <tom@stellard.net>
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 219710
v2: Add SI lowering
Add test
v3: Place work dimensions after the kernel arguments.
v4: Calculate offset while lowering arguments
v5: rebase
v6: change prefix to AMDGPU
Reviewed-by: Tom Stellard <tom@stellard.net>
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 219705
Currently this only functions to match simple cases
where ds_read2_* / ds_write2_* instructions can be used.
In the future it might match some of the other weird
load patterns, such as direct to LDS loads.
Currently enabled only with a subtarget feature to enable
easier testing.
llvm-svn: 219533
LLVM assumes INSERT_SUBREG will always have register operands, so
we need to legalize non-register operands, like FrameIndexes, to
avoid random assertion failures.
llvm-svn: 219420
Added a FIXME coment instead, we need to handle the case where the
two DS instructions being compared have different numbers of operands.
llvm-svn: 219236
No tests for omod since nothing uses it yet, but
this should get rid of the remaining annoying trailing
zeros after some instructions.
llvm-svn: 218692
This has weird operand requirements so it's worthwhile
to have very strict checks for its operands.
Add different combinations of SGPR operands.
llvm-svn: 218535
Instead of moving the first SGPR that is different than the first,
legalize the operand that requires the fewest moves if one
SGPR is used for multiple operands.
This saves extra moves and is also required for some instructions
which require that the same operand be used for multiple operands.
llvm-svn: 218532
Disable the SGPR usage restriction parts of the DAG legalizeOperands.
It now should only be doing immediate folding until it can be replaced
later. The real legalization work is now done by the other
SIInstrInfo::legalizeOperands
llvm-svn: 218531
e.g. v_cndmask_b32 requires the condition operand be an SGPR.
If one of the source operands were an SGPR, that would be considered
the one SGPR use and the condition operand would be illegally moved.
llvm-svn: 218529
No test since the current SIISelLowering::legalizeOperands
effectively hides this, and the general uses seem to only fire
on SALU instructions which don't have modifiers between
the operands.
When trying to use legalizeOperands immediately after
instruction selection, it now sees a lot more patterns
it did not see before which break on this.
llvm-svn: 218527
This reverts commit r218254.
The global_atomics.ll test fails with asserts disabled. For some reason,
the compiler fails to produce the atomic no return variants.
llvm-svn: 218257
Only 1 decimal place should be printed for inline immediates.
Other constants should be hex constants.
Does not include f64 tests because folding those inline
immediates currently does not work.
llvm-svn: 217964
Add some more tests to make sure better operand
choices are still made. Leave some cases that seem
to have no reason to ever be e64 alone.
llvm-svn: 217789
I noticed some odd looking cases where addr64 wasn't set
when storing to a pointer in an SGPR. This seems to be intentional,
and partially tested already.
The documentation seems to describe addr64 in terms of which registers
addressing modifiers come from, but I would expect to always need
addr64 when using 64-bit pointers. If no offset is applied,
it makes sense to not need to worry about doing a 64-bit add
for the final address. A small immediate offset can be applied,
so is it OK to not have addr64 set if a carry is necessary when adding
the base pointer in the resource to the offset?
llvm-svn: 217785
Do
(shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
This is already done for multiplies, but since multiplies
by powers of two are turned into shifts, we also need
to handle it here.
This might want checks for isLegalAddImmediate to avoid
transforming an add of a legal immediate with one that isn't.
llvm-svn: 217610
Now that the operations are all implemented, we can test this sub-arch here.
Signed-off-by: Aaron Watry <awatry@gmail.com>
Reviewed-by: Matt Arsenault <matthew.arsenault@amd.com>
llvm-svn: 217595
If an fmul was introduced by lowering, it wouldn't be folded
into a multiply by a constant since the earlier combine would
have replaced the fmul with the fadd.
llvm-svn: 216932
Ordinarily (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
is only done if the add has one use. If the resulting constant
add can be folded into an addressing mode, force this to happen
for the pointer operand.
This ends up happening a lot because of how LDS objects are allocated.
Since the globals are allocated next to each other, acessing the first
element of the second object is directly indexed by a shifted pointer.
llvm-svn: 215739
The default assumes that a 16-bit signed offset is used.
LDS instruction use a 16-bit unsigned offset, so it wasn't
being used in some cases where it was assumed a negative offset
could be used.
More should be done here, but first isLegalAddressingMode needs
to gain an addressing mode argument. For now, copy most of the rest
of the default implementation with the immediate offset change.
llvm-svn: 215732
This for some reason fixes v1i64 kernel arguments on pre-SI. This
currently breaks some other cases in the kernel-args.ll test for R600,
but I'm not particularly confident in the new output. VTX_READ_* are not
used for some of the scalarized cases, and the code reading from the
constant buffer doesn't make much sense to me.
llvm-svn: 215564
Unfortunately, our use of the SDNode class hierarchy for INTRINSIC_W_CHAIN and
INTRINSIC_VOID nodes is somewhat broken right now. These nodes sometimes are
used for memory intrinsics (those with MachineMemOperands), and sometimes not.
When not, the nodes are not created as instances of MemIntrinsicSDNode, but
rather created as some other subclass of SDNode using DAG::getNode. When they
are memory intrinsics, they are created using DAG::getMemIntrinsicNode as
instances of MemIntrinsicSDNode. MemIntrinsicSDNode is a subclass of
MemSDNode, but prior to r214452, we had a non-self-consistent setup whereby
MemIntrinsicSDNode::classof on INTRINSIC_W_CHAIN and INTRINSIC_VOID would
return true but MemSDNode::classof on INTRINSIC_W_CHAIN and INTRINSIC_VOID
would return false. In r214452, MemSDNode::classof was changed to return true
for INTRINSIC_W_CHAIN and INTRINSIC_VOID, which is now self-consistent. The
problem is that neither the pre-r214452 logic and the post-r214452 logic are
really right. The truth is that not all INTRINSIC_W_CHAIN and INTRINSIC_VOID
nodes are instances of MemIntrinsicSDNode (or MemSDNode for that matter), and
the return value from classof needs to reflect that. This was broken before
r214452 (because MemIntrinsicSDNode::classof always returned true), and was
broken afterward (because MemSDNode::classof also always returned true), and
will now be correct.
The minimal solution is to grab one of the SubclassData bits (there is one left
for MemIntrinsicSDNode nodes) and use it to store whether or not a particular
INTRINSIC_W_CHAIN or INTRINSIC_VOID is really an instance of
MemIntrinsicSDNode or not. Doing this allows both MemIntrinsicSDNode::classof
and MemSDNode::classof to return the correct answer for the underlying object
for both the memory-intrinsic and non-memory-intrinsic cases.
This fixes the problem that r214452 created in the SelectionDAGDumper (thanks
to Matt Arsenault for pointing it out).
Because PowerPC does not implement getTgtMemIntrinsic, this change breaks
test/CodeGen/PowerPC/unal-altivec-wint.ll. I've XFAILed it for now, and will
fix it in a follow-up commit.
llvm-svn: 215511
v2: drop enum keyword
use correct extension mode
don't bother computing the sign in unsinged case
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 215462
v2: add tests
rename LowerSDIV24 to LowerSDIVREM24
handle the rem part in this function
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 215460
There are no variable values like registers encoded in the low 32 bits of MUBUF
instructions, so it is relatively easy to check these bits, and it will
help prevent us from introducing encoding bugs.
llvm-svn: 215397
This bit was left uninitialized, which was causing some random failures
of piglit tests.
NOTE: This is a candidate for the 3.5 branch.
llvm-svn: 215396
These tests were using SI-NOT: MOVREL to make sure concat vectors
weren't being lowered to stack loads and stores, but we are using
scratch buffers for the stack now instead of registers, so we need
to add an additional SI-NOT check for scratch buffers.
With this change I was able to uncover one broken test which will
be fixed in a future commit.
llvm-svn: 215269
This partially fixes weird looking load scheduling
in memcpy test. The load clustering doesn't seem
particularly smart, but this method seems to be partially
deprecated so it might not be worth trying to fix.
llvm-svn: 214943
This currently has a noticable effect on the kernel argument loads.
LDS and global loads are more problematic, I think because of how copies
are currently inserted to ensure that the address is a VGPR.
llvm-svn: 214942
This slipped in in r214467, so something like
V_MOV_B32_e32 v0, ... is now printed with 2 spaces
between the instruction name and first operand.
llvm-svn: 214660