D47163 created a rule that we should not change the casted
type of a select when we have matching types in its compare condition.
That was intended to help vector codegen, but it also could create
situations where we miss subsequent folds as shown in PR44545:
https://bugs.llvm.org/show_bug.cgi?id=44545
By using shouldChangeType(), we can continue to get the vector folds
(because we always return false for vector types). But we also solve
the motivating bug because it's ok to narrow the scalar select in that
example.
Our canonicalization rules around select are a mess, but AFAICT, this
will not induce any infinite looping from the reverse transform (but
we'll need to watch for that possibility if committed).
Side note: there's a similar use of shouldChangeType() for phi ops
just below this diff, and the source and destination types appear to
be reversed.
Differential Revision: https://reviews.llvm.org/D72733
Followup to D72978. This moves existing negation handling in
InstCombine into freelyNegateValue(), which make it composable.
In particular, root negations of div/zext/sext/ashr/lshr/sub can
now always be performed through a shl/trunc as well.
Differential Revision: https://reviews.llvm.org/D73288
Summary: masked_load and masked_store instructions require the alignment to be specified and a power of two. It seems to me that this requirement applies to masked_gather and masked_scatter as well.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73179
Fixes https://bugs.llvm.org/show_bug.cgi?id=44529. We already have
a combine to sink a negation through a left-shift, but it currently
only works if the shift operand is negatable without creating any
instructions. This patch introduces freelyNegateValue() as a more
powerful extension of dyn_castNegVal(), which allows negating a
value as long as this doesn't end up increasing instruction count.
Specifically, this patch adds support for negating A-B to B-A.
This mechanism could in the future be extended to handle general
negation chains that a) start at a proper 0-X negation and b) only
require one operand to be freely negatable. This would end up as a
weaker form of D68408 aimed at the most obviously profitable subset
that eliminates a negation entirely.
Differential Revision: https://reviews.llvm.org/D72978
This is 1 of the potential folds uncovered by extending D72521.
We don't seem to do this in the backend either (unless I'm not
seeing some target-specific transform).
icc and gcc (appears to be target-specific) do this transform.
Differential Revision: https://reviews.llvm.org/D73057
This should be the last step needed to solve the problem in the
description of PR44153:
https://bugs.llvm.org/show_bug.cgi?id=44153
If we're casting an FP value to int, testing its signbit, and then
choosing between a value and its negated value, that's a
complicated way of saying "copysign":
(bitcast X) < 0 ? -TC : TC --> copysign(TC, X)
Differential Revision: https://reviews.llvm.org/D72643
Currently there are 4 different mechanisms for controlling denormal
flushing behavior, and about as many equivalent frontend controls.
- AMDGPU uses the fp32-denormals and fp64-f16-denormals subtarget features
- NVPTX uses the nvptx-f32ftz attribute
- ARM directly uses the denormal-fp-math attribute
- Other targets indirectly use denormal-fp-math in one DAGCombine
- cl-denorms-are-zero has a corresponding denorms-are-zero attribute
AMDGPU wants a distinct control for f32 flushing from f16/f64, and as
far as I can tell the same is true for NVPTX (based on the attribute
name).
Work on consolidating these into the denormal-fp-math attribute, and a
new type specific denormal-fp-math-f32 variant. Only ARM seems to
support the two different flush modes, so this is overkill for the
other use cases. Ideally we would error on the unsupported
positive-zero mode on other targets from somewhere.
Move the logic for selecting the flush mode into the compiler driver,
instead of handling it in cc1. denormal-fp-math/denormal-fp-math-f32
are now both cc1 flags, but denormal-fp-math-f32 is not yet exposed as
a user flag.
-cl-denorms-are-zero, -fcuda-flush-denormals-to-zero and
-fno-cuda-flush-denormals-to-zero will be mapped to
-fp-denormal-math-f32=ieee or preserve-sign rather than the old
attributes.
Stop emitting the denorms-are-zero attribute for the OpenCL flag. It
has no in-tree users. The meaning would also be target dependent, such
as the AMDGPU choice to treat this as only meaning allow flushing of
f32 and not f16 or f64. The naming is also potentially confusing,
since DAZ in other contexts refers to instructions implicitly treating
input denormals as zero, not necessarily flushing output denormals to
zero.
This also does not attempt to change the behavior for the current
attribute. The LangRef now states that the default is ieee behavior,
but this is inaccurate for the current implementation. The clang
handling is slightly hacky to avoid touching the existing
denormal-fp-math uses. Fixing this will be left for a future patch.
AMDGPU is still using the subtarget feature to control the denormal
mode, but the new attribute are now emitted. A future change will
switch this and remove the subtarget features.
Fixes https://bugs.llvm.org/show_bug.cgi?id=44552. We need to make
sure that the store is reprocessed, because performing DSE may
expose more DSE opportunities.
There is a slight caveat here though: We need to make sure that we
add back the store the worklist first, because that means it will
be processed after the operands of the removed store have been
processed. This is a general bug in InstCombine worklist management
that I hope to address at some point, but for now it means we need
to do this manually rather than just returning the instruction as
changed.
Differential Revision: https://reviews.llvm.org/D72807
There are two related bugs here: First, we don't add the operand
we're replacing to the worklist, which means it may not get DCEd
(see test change). Second, usually this would just get picked up
in the next iteration, but we also do not report the instruction
as changed. This means that we do not get that extra instcombine
iteration, and more importantly, may break the pass pipeline, as
the function is not marked as changed.
Differential Revision: https://reviews.llvm.org/D72864
Currently, there is no way to disable ExpensiveCombines when doing
a standalone opt -instcombine run, as that's the default, and the
opt option can currently only be used to force enable, not to force
disable. The only way to disable expensive combines is via -O1 or -O2,
but that of course also runs the rest of the kitchen sink...
This patch allows using opt -instcombine -expensive-combines=0 to
run InstCombine without ExpensiveCombines.
Differential Revision: https://reviews.llvm.org/D72861
llvm.memset intrinsics do only write memory, but are missing
IntrWriteMem, so they doesNotReadMemory() returns false for them.
The test change is due to the test checking the fn attribute ids at the
call sites, which got bumped up due to a new combination with writeonly
appearing in the test file.
Reviewers: jdoerfert, reames, efriedma, nlopes, lebedev.ri
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D72789
Summary:
This patch could be treated as a rebase of D33960. It also fixes PR35547.
A fix for `llvm/test/Other/close-stderr.ll` is proposed in D68164. Seems
the consensus is that the test is passing by chance and I'm not
sure how important it is for us. So it is removed like in D33960 for now.
The rest of the test fixes are just adding `--crash` flag to `not` tool.
** The reason it fixes PR35547 is
`exit` does cleanup including calling class destructor whereas `abort`
does not do any cleanup. In multithreading environment such as ThinLTO or JIT,
threads may share states which mostly are ManagedStatic<>. If faulting thread
tearing down a class when another thread is using it, there are chances of
memory corruption. This is bad 1. It will stop error reporting like pretty
stack printer; 2. The memory corruption is distracting and nondeterministic in
terms of error message, and corruption type (depending one the timing, it
could be double free, heap free after use, etc.).
Reviewers: rnk, chandlerc, zturner, sepavloff, MaskRay, espindola
Reviewed By: rnk, MaskRay
Subscribers: wuzish, jholewinski, qcolombet, dschuff, jyknight, emaste, sdardis, nemanjai, jvesely, nhaehnle, sbc100, arichardson, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, lenary, s.egerton, pzheng, cfe-commits, MaskRay, filcab, davide, MatzeB, mehdi_amini, hiraditya, steven_wu, dexonsmith, rupprecht, seiya, llvm-commits
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D67847
As discussed in the motivating PR44509:
https://bugs.llvm.org/show_bug.cgi?id=44509
...we can end up with worse code using fast-math than without.
This is because the reassociate pass greedily transforms fsub
into fneg/fadd and apparently (based on the regression tests
seen here) expects instcombine to clean that up if it wasn't
profitable. But we were missing this fold:
(X - Y) - Z --> X - (Y + Z)
There's another, more specific case that I think we should
handle as shown in the "fake" fneg test (but missed with a real
fneg), but that's another patch. That may be tricky to get
right without conflicting with existing transforms for fneg.
Differential Revision: https://reviews.llvm.org/D72521
When multiple guard intrinsics are merged into one, currently the
result of eraseInstFromFunction() is returned -- however, this
should only be done if the current instruction is being removed.
In this case we're removing a different instruction and should
instead report that the current one has been modified by returning it.
For this test case, this reduces the number of instcombine iterations
from 5 to 2 (the minimum possible).
Differential Revision: https://reviews.llvm.org/D72558
This fixes the issue encountered in D71164. Instead of using a
range-based for, manually iterate over the users and advance the
iterator beforehand, so we do not skip any users due to iterator
invalidation.
Differential Revision: https://reviews.llvm.org/D72657
Summary:
If aligment on `LoadInst` isn't specified, load is assumed to be ABI-aligned.
And said aligment may be different for different types.
So if we change load type, but don't pay extra attention to the aligment
(i.e. keep it unspecified), we may either overpromise (if the default aligment
of the new type is higher), or underpromise (if the default aligment
of the new type is smaller).
Thus, if no alignment is specified, we need to manually preserve the implied ABI alignment.
This addresses https://bugs.llvm.org/show_bug.cgi?id=44543 by making combineLoadToNewType preserve ABI alignment of the load.
Reviewers: spatel, lebedev.ri
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72710
Fix https://bugs.llvm.org/show_bug.cgi?id=44419 by preserving the
nuw on sub of geps. We only do this if the offset has a multiplication
as the final operation, as we can't be sure the operations is nuw
in the other cases without more thorough analysis.
Differential Revision: https://reviews.llvm.org/D72048
This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0.
The m_OneUse check is avoided because even in the case of the
multiple uses for 1.0/Y, the number of instructions remain the same
and a division is replaced by a multiplication.
Differential Revision: https://reviews.llvm.org/D72319
The added testcase shows the current transformation for the operation
Z / (1.0 / Y), which remains unchanged. This will be updated to align
with the transformed code (Y * Z) with D72319.
The existing transformation Z / (X / Y) => (Y * Z) / X is not handling
this case as there are multiple uses for (1.0 / Y) in this testcase.
Patch by: @raghesh (Raghesh Aloor)
Differential Revision: https://reviews.llvm.org/D72388
This reverts commit a041c4ec6f.
This looks like a non-trivial change and there has been no code
reviews (at least there were no phabricator revisions attached to the
commit description). It is also causing a regression in one of our
downstream integration tests, we haven't been able to come up with a
minimal reproducer yet.
not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) -->
select ?, (cmp TPred', ?, ?), (cmp FPred', ?, ?)
If both sides of the select are cmps, we can remove an instruction.
The case where only side is a cmp is deferred to a possible
follow-on patch.
We have a more general 'isFreeToInvert' analysis, but I'm not seeing
a way to use that more widely without inducing infinite looping
(opposing transforms).
Here, we flip the compare predicates directly, so we should not have
any danger by creating extra intermediate 'not' ops.
Alive proofs:
https://rise4fun.com/Alive/jKa
Name: both select values are compares - invert predicates
%tcmp = icmp sle i32 %x, %y
%fcmp = icmp ugt i32 %z, %w
%sel = select i1 %cond, i1 %tcmp, i1 %fcmp
%not = xor i1 %sel, true
=>
%tcmp_not = icmp sgt i32 %x, %y
%fcmp_not = icmp ule i32 %z, %w
%not = select i1 %cond, i1 %tcmp_not, i1 %fcmp_not
Name: false val is compare - invert/not
%fcmp = icmp ugt i32 %z, %w
%sel = select i1 %cond, i1 %tcmp, i1 %fcmp
%not = xor i1 %sel, true
=>
%tcmp_not = xor i1 %tcmp, -1
%fcmp_not = icmp ule i32 %z, %w
%not = select i1 %cond, i1 %tcmp_not, i1 %fcmp_not
Differential Revision: https://reviews.llvm.org/D72007
Name: (X & (- Y)) - X -> - (X & (Y - 1)) (PR44448)
%negy = sub i8 0, %y
%unbiasedx = and i8 %negy, %x
%r = sub i8 %unbiasedx, %x
=>
%ymask = add i8 %y, -1
%xmasked = and i8 %ymask, %x
%r = sub i8 0, %xmasked
https://rise4fun.com/Alive/OIpla
This decreases use count of %x, may allow us to
later hoist said negation even further,
and results in marginally nicer X86 codegen.
See
https://bugs.llvm.org/show_bug.cgi?id=44448https://reviews.llvm.org/D71499