During extraction, stale llvm.assume handles may be retained in the
original function. The setup is:
1) CodeExtractor unregisters assumptions in the blocks that are to be
extracted.
2) Extraction happens. There are now two functions: f1 and f1.extracted.
3) Leftover assumptions in f1 (/not/ removed as they were not in the set of
blocks to be extracted) now have affected-value llvm.assume handles in
f1.extracted.
When assumptions for a value used in f1 are looked up, ValueTracking can assert
as some of the handles are in the wrong function. To fix this, simply erase the
llvm.assume calls in the extracted function.
Alternatives include flushing the assumption cache in the original function, or
walking all values used in the original function to prune stale affected-value
handles. Both seem more expensive.
Testing: check-llvm, LNT run with -mllvm -hot-cold-split enabled
rdar://58460728
2 fixes:
Register coloring can re-assign virtual registers. When the frame base register
is colored, update the DwarfFrameBase accordingly When the frame base register
is stackified, do not attempt to encode DW_AT_frame_base as a local In the
future we will presumably want to handle this case better but for now we can
emit worse debug info rather than crashing.
Differential Revision: https://reviews.llvm.org/D73581
When the G_BRCOND is fed by a eq or ne G_ICMP, it may be possible to fold a
G_AND into the branch by producing a tbnz/tbz instead.
This happens when
1. We have a ne/eq G_ICMP feeding into the G_BRCOND
2. The G_ICMP is a comparison against 0
3. One of the operands of the G_AND is a power of 2 constant
This is very similar to the code in AArch64TargetLowering::LowerBR_CC.
Add opt-and-tbnz-tbz to test this.
Differential Revision: https://reviews.llvm.org/D73573
Symbols created for merged external global variables have default
visibility. This can break programs when compiling with -Oz
-fvisibility=hidden as symbols that should be hidden will be exported at
link time.
Differential Revision: https://reviews.llvm.org/D73235
We have to avoid using a GOT relocation to access the bias variable,
setting the hidden visibility achieves that.
Differential Revision: https://reviews.llvm.org/D73529
Under --target=aarch64-fuchsia, -mcmodel=kernel has the effect of
(the default) -mcmodel=small plus -mtp=el1 (which did not exist when
this behavior was added). Fuchsia's kernel now uses -mtp=el1
directly instead of -mcmodel=kernel, so remove this special support.
Patch By: mcgrathr
Differential Revision: https://reviews.llvm.org/D73409
It isn't known how many times we've seen the same variable or member in
the global scope (unlike in functions), but there still can be some duplicates
among different CUs.
So, this patch proposes to count variables in the global scope just as a sum of
the number of vars, constant members and artificial entities.
Reviewed by: aprantl
Differential Revision: https://reviews.llvm.org/D73004
A few DW_TAG_formal_parameter's of the same function may have the same
name (e.g. variadic (template) functions) or don't have a name at all
(if the parameter isn't used inside the function body), but we still
need to be able to distinguish between them to get correct number of 'total vars'
and 'availability' metric.
Reviewed by: aprantl
Differential Revision: https://reviews.llvm.org/D73003
Here may be more than one out-of-line instance of the same function
among different CUs. All of them should be accounted for to get an accurate
total number of variables/parameters.
Reviewed by: aprantl
Differential Revision: https://reviews.llvm.org/D73002
It can still be beneficial to do the optimization if the result of the compare
is used by *another* select.
Differential Revision: https://reviews.llvm.org/D73511
The only thing missing for basic llvm-symbolizer support is the ability on
lib/Object to get a wasm symbol's section ID, which allows sorting and
computation of the symbols' sizes.
Also, when the WasmAsmParser switches sections on new functions, also add the
section to the list of Dwarf sections if Dwarf is being generated for assembly;
this allows writing of simple tests.
Reviewers: sbc100, jhenderson, aardappel
Differential Revision: https://reviews.llvm.org/D73246
DW_TAG_subroutine_type is not really useful for statistics purposes, as it never
has location information. But it may contain DW_TAG_formal_parameter
children that generate number of parameters w/o location and decrease
'availability' metric significantly.
Reviewed by: djtodoro
Differential Revision: https://reviews.llvm.org/D72983
Different variables and functions might have the same name in different CU.
To calculate 'Availability' metric more accurate (i.e. to avoid getting
availability above 100%), we need to have some additional logic to
distinguish between them.
The patch introduces a DIE identifier that consists of a function/variable name
and declaration information: a filename and a line number. This allows
distinguishing different functions/variables (different means declared in
different files/lines) with the same name, keeping duplicates counted
as duplicates.
Reviewed by: aprantl, djtodoro
Differential Revision: https://reviews.llvm.org/D72797
Currently only supports simple copying, other operations to follow.
Reviewers: sbc100, alexshap, jhenderson
Differential Revision: https://reviews.llvm.org/D70930
This patch adds support for explicitly highlighting sub-expressions
shared by multiple leaf nodes. For example consider the following
code
%shared.load = tail call <8 x double> @llvm.matrix.columnwise.load.v8f64.p0f64(double* %arg1, i32 %stride, i32 2, i32 4), !dbg !10, !noalias !10
%trans = tail call <8 x double> @llvm.matrix.transpose.v8f64(<8 x double> %shared.load, i32 2, i32 4), !dbg !10
tail call void @llvm.matrix.columnwise.store.v8f64.p0f64(<8 x double> %trans, double* %arg3, i32 10, i32 4, i32 2), !dbg !10
%load.2 = tail call <30 x double> @llvm.matrix.columnwise.load.v30f64.p0f64(double* %arg3, i32 %stride, i32 2, i32 15), !dbg !10, !noalias !10
%mult = tail call <60 x double> @llvm.matrix.multiply.v60f64.v8f64.v30f64(<8 x double> %trans, <30 x double> %load.2, i32 4, i32 2, i32 15), !dbg !11
tail call void @llvm.matrix.columnwise.store.v60f64.p0f64(<60 x double> %mult, double* %arg2, i32 10, i32 4, i32 15), !dbg !11
We have two leaf nodes (the 2 stores) and the first store stores %trans
which is also used by the matrix multiply %mult. We generate separate
remarks for each leaf (stores). To denote that parts are shared, the
shared expressions are marked as shared (), with a reference to the
other remark that shares it. The operation summary also denotes the
shared operations separately.
Reviewers: anemet, Gerolf, thegameg, hfinkel, andrew.w.kaylor, LuoYuanke
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D72526
Dead instructions do not need to be sunk. Currently we try and record
the recipies for them, but there are no recipes emitted for them and
there's nothing to sink. They can be removed from SinkAfter while
marking them for recording.
Fixes PR44634.
Reviewers: rengolin, hsaito, fhahn, Ayal, gilr
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D73423
Add the prefixed instructions pld and pstd to future CPU. These are load and
store instructions that require new operand types that are 34 bits. This patch
adds the two instructions as well as the operand types required.
Note that this patch also makes a minor change to tablegen to account for the
fact that some instructions are going to require shifts greater than 31 bits
for the new 34 bit instructions.
Differential Revision: https://reviews.llvm.org/D72574
Summary: X86 has instructions to calculate fma and fneg at the same time. But we combine the fneg and fma only when fneg is the source operand under strict FP.
Reviewers: craig.topper, andrew.w.kaylor, uweigand, RKSimon, LiuChen3
Subscribers: LuoYuanke, llvm-commits, cfe-commits, jdoerfert, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72824
Many of the debug line prologue errors are not inherently fatal. In most
cases, we can make reasonable assumptions and carry on. This patch does
exactly that. In the case of length problems, the approach of "the
claimed length is correct" is taken to be consistent with other
instances such as the SectionParser, which ignores the read length.
Reviewed by: dblaikie
Differential Revision: https://reviews.llvm.org/D72158
Summary:
Up to gfx9, writes to vcc_lo and vcc_hi by instructions like
v_readlane and v_readfirstlane do not update vccz to reflect the new
value of vcc. Fix it by reusing part of the existing vccz bug handling
code, which inserts an "s_mov_b64 vcc, vcc" instruction to restore vccz
just before an instruction that needs the correct value.
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69661
Summary:
Function calls and stack-passing of function arguments.
Custom lowering, isel patterns and tests.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D73461
The intention of Object/readobj-shared-object.test was to check the
general output for shared object.
I've added a case for testing dynamic objects to ELF/symbols.test.
Also we already test dynamic symbols printing in ELF/dyn-symbols.test +
I've added a case for `--dyn-syms` alias in D73164.
Hence we can remove this piece from Object/readobj-shared-object.test.
Differential revision: https://reviews.llvm.org/D73175
Summary:
This is a follow up on D61634. It adds an LLVM IR intrinsic to allow better implementation of memcpy from C++.
A follow up CL will add the intrinsics in Clang.
Reviewers: courbet, theraven, t.p.northover, jdoerfert, tejohnson
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71710
This patch updates the remark to also include a summary of the number of
vector operations generated for each matrix expression.
Reviewers: anemet, Gerolf, thegameg, hfinkel, andrew.w.kaylor, LuoYuanke
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D72480
from DenseMap to MapVector
The iteration order of LoopVectorizationLegality::Reductions matters for the
final code generation, so we better use MapVector instead of DenseMap for it
to remove the nondeterminacy. reduction-order.ll in the patch is an example
reduced from the case we saw. In the output of opt command, the order of the
select instructions in the vector.body block keeps changing from run to run
currently.
Differential Revision: https://reviews.llvm.org/D73490
Generate remarks for matrix operations in a function. To generate remarks
for matrix expressions, the following approach is used:
1. Collect leafs of matrix expressions (done in
RemarkGenerator::getExpressionLeafs). Leafs are lowered matrix
instructions without other matrix users (like stores).
2. For each leaf, create a remark containing a linearizied version of the
matrix expression.
The following improvements will be submitted as follow-ups:
* Summarize number of vector instructions generated for each expression.
* Account for shared sub-expressions.
* Propagate matrix remarks up the inlining chain.
The information provided by the matrix remarks helps users to spot cases
where matrix expression got split up, e.g. due to inlining not
happening. The remarks allow users to address those issues, ensuring
best performance.
Reviewers: anemet, Gerolf, thegameg, hfinkel, andrew.w.kaylor, LuoYuanke
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D72453
This behavior appears to have changed unintentionally in
b0e979724f.
Instead of printing the leading newline in printFunction, print it when
printing a module. This ensures that `OS << *Func` starts printing
immediately on the current line, but whole modules are printed nicely.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D73505
Summary:
Treat scalable allocas as if they have storage size of 0, and
scalable-typed memory accesses as if their range is unlimited.
This is not a proper support of scalable vector types in the analysis -
we can do better, but not today.
Reviewers: vitalybuka
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73394
This patch adds a new option to enable/disable register renaming in the
load-store optimizer. Defaults to disabled, as there is a potential
mis-compile caused by this.
Trivial type predicates should be moved into the tablegen pattern
itself, and not checked inside complex patterns. This eliminates a
redundant complex pattern, and fixes select source modifiers for
GlobalISel.
I have further patches which fully handle select in tablegen and
remove all of the C++ selection, although it requires the ugliness to
support the entire range of legal register types.
D47163 created a rule that we should not change the casted
type of a select when we have matching types in its compare condition.
That was intended to help vector codegen, but it also could create
situations where we miss subsequent folds as shown in PR44545:
https://bugs.llvm.org/show_bug.cgi?id=44545
By using shouldChangeType(), we can continue to get the vector folds
(because we always return false for vector types). But we also solve
the motivating bug because it's ok to narrow the scalar select in that
example.
Our canonicalization rules around select are a mess, but AFAICT, this
will not induce any infinite looping from the reverse transform (but
we'll need to watch for that possibility if committed).
Side note: there's a similar use of shouldChangeType() for phi ops
just below this diff, and the source and destination types appear to
be reversed.
Differential Revision: https://reviews.llvm.org/D72733
This allows SimplifyDemandedBits to call SimplifyMultipleUseDemandedBits to create a simpler ISD::EXTRACT_SUBVECTOR, which is particularly useful for cases where we're splitting into subvectors anyhow.
Differential Revision: This allows SimplifyDemandedBits to call SimplifyMultipleUseDemandedBits to create a simpler ISD::EXTRACT_SUBVECTOR, which is particularly useful for cases where we're splitting into subvectors anyhow.
This patch fixes an assertion failure in DwarfExpression that is
triggered when a complex fragment has exactly the size of a
subregister of the register the DBG_VALUE points to *and* there is no
DWARF encoding for the super-register.
I took the opportunity to replace/document some magic values with
static constructor functions to make this code less confusing to read.
rdar://problem/58489125
Differential Revision: https://reviews.llvm.org/D72938