While in the area, also change some unsigned variables to size_t, and
introduce an LLVM_FALLTHROUGH instead of a comment stating that.
Differential Revision: http://reviews.llvm.org/D25982
llvm-svn: 285193
Summary: It breaks the build for the ASTMatchers
Subscribers: klimek, cfe-commits
Differential Revision: http://reviews.llvm.org/D13893
llvm-svn: 250827
local submodule visibility enabled; that top-level file might not actually be
the module includes buffer if use of prebuilt modules is disabled.
llvm-svn: 241120
Introduce the clang pragmas "assume_nonnull begin" and "assume_nonnull
end" in which we make default assumptions about the nullability of many
unannotated pointers:
- Single-level pointers are inferred to __nonnull
- NSError** in a (function or method) parameter list is inferred to
NSError * __nullable * __nullable.
- CFErrorRef * in a (function or method) parameter list is inferred
to CFErrorRef __nullable * __nullable.
- Other multi-level pointers are never inferred to anything.
Implements rdar://problem/19191042.
llvm-svn: 240156
visibility is enabled) or leave and re-enter it, restore the macro and module
visibility state from last time we were in that submodule.
This allows mutually-#including header files to stand a chance at being
modularized with local visibility enabled.
llvm-svn: 237871
With this change, enabling -fmodules-local-submodule-visibility results in name
visibility rules being applied to submodules of the current module in addition
to imported modules (that is, names no longer "leak" between submodules of the
same top-level module). This also makes it much safer to textually include a
non-modular library into a module: each submodule that textually includes that
library will get its own "copy" of that library, and so the library becomes
visible no matter which including submodule you import.
llvm-svn: 237473
This flag specifies that the normal visibility rules should be used even for
local submodules (submodules of the currently-being-built module). Thus names
will only be visible if a header / module that declares them has actually been
included / imported, and not merely because a submodule that happened to be
built earlier declared those names. This also removes the need to modularize
bottom-up: textually-included headers will be included into every submodule
that includes them, since their include guards will not leak between modules.
So far, this only governs visibility of macros, not of declarations, so is not
ready for real use yet.
llvm-svn: 236350
It has no place there; it's not a property of the Module, and it makes
restoring the visibility set when we leave a submodule more difficult.
llvm-svn: 236300
Modules builds fundamentally have a non-linear macro history. In the interest
of better source fidelity, represent the macro definition information
faithfully: we have a linear macro directive history within each module, and at
any point we have a unique "latest" local macro directive and a collection of
visible imported directives. This also removes the attendent complexity of
attempting to create a correct MacroDirective history (which we got wrong
in the general case).
No functionality change intended.
llvm-svn: 236176
the active module macros at the point of definition, rather than reconstructing
it from the macro history. No functionality change intended.
llvm-svn: 235941
Previously we'd defer this determination until writing the AST, which doesn't
allow us to use this information when building other submodules of the same
module. This change also allows us to use a uniform mechanism for writing
module macro records, independent of whether they are local or imported.
llvm-svn: 235614
This DefaultIgnore warning under -Wincomplete-module was firing on
any module map files that happened to be parsed (it's only supposed to
fire on headers), and it has been superceded by
-Wnon-modular-include-in-module anyway.
For compatibility, I rewired -Wincomplete-module to imply
-Wnon-modular-include-in-module.
llvm-svn: 221357
This allows a module to specify that it logically contains a file, but that
said file is non-modular and intended for textual inclusion. This allows
layering checks to work properly in the presence of such files.
llvm-svn: 220448
lexer, add the token buffer underneath the caching lexer where possible and
push the tokens directly into the caching lexer otherwise. We previously
put the lexer into a corrupted state where we could not guarantee to provide
the tokens in the right order and would sometimes assert.
llvm-svn: 218333
The compilation pipeline doesn't actually need to know about the high-level
concept of diagnostic mappings, and hiding the final computed level presents
several simplifications and other potential benefits.
The only exceptions are opportunistic checks to see whether expensive code
paths can be avoided for diagnostics that are guaranteed to be ignored at a
certain SourceLocation.
This commit formalizes that invariant by introducing and using
DiagnosticsEngine::isIgnored() in place of individual level checks throughout
lex, parse and sema.
llvm-svn: 211005
module. Use the marker to diagnose cases where we try to transition between
submodules when not at the top level (most likely because a closing brace was
missing at the end of a header file, but is also possible if submodule headers
attempt to do something fundamentally non-modular, like our .def files).
llvm-svn: 195543
If the edit distance between the two macros is more than 50%, DefinedMacro may not be header guard or can be header guard of another header file or it might be defining something completely different set by the build environment.
llvm-svn: 192547
Before this patch, Lex() would recurse whenever the current lexer changed (e.g.
upon entry into a macro). This patch turns the recursion into a loop: the
various lex routines now don't return a token when the current lexer changes,
and at the top level Preprocessor::Lex() now loops until it finds a token.
Normally, the recursion wouldn't end up being very deep, but the recursion depth
can explode in edge cases like a bunch of consecutive macros which expand to
nothing (like in the testcase test/Preprocessor/macro_expand_empty.c in this
patch).
<rdar://problem/14569770>
llvm-svn: 190980
properly. This warning checks that the #ifndef and #define directives at
the beginning of a header refer to the same macro name. Includes a fix-it
hint to correct the header guard.
llvm-svn: 183867