Commit Graph

3 Commits

Author SHA1 Message Date
Ehsan Amiri dbcfea9811 Extend trip count instead of truncating IV in LFTR, when legal
When legal, extending trip count in the loop control logic generates better code compared to truncating IV. This is because

(1) extending trip count is a loop invariant operation (see genLoopLimit where we prove trip count is loop invariant).
(2) Scalar Evolution seems to have problems understanding trunc when computing loop trip count. So removing them allows better analysis performed in Scalar Evolution. (In particular this fixes PR 28363 which is the motivation for this change).

I am not going to perform any performance test. Any degradation caused by this should be an indication of a bug elsewhere.

To prove legality, we rely on SCEV to prove zext(trunc(IV)) == IV (or similarly for sext). If this holds, we can prove equivalence of trunc(IV)==ExitCnt (1) and IV == zext(ExitCnt). Simply take zext of boths sides of (1) and apply the proven equivalence.

This commit contains changes in a newly added testcase which was not included in the previous commit (which was reverted later on).

https://reviews.llvm.org/D23075

llvm-svn: 278421
2016-08-11 21:31:40 +00:00
Ehsan Amiri 3818f1b38a revert 278334
llvm-svn: 278337
2016-08-11 14:51:14 +00:00
Ehsan Amiri b9fcc2b171 Extend trip count instead of truncating IV in LFTR, when legal
When legal, extending trip count in the loop control logic generates better code compared to truncating IV. This is because

(1) extending trip count is a loop invariant operation (see genLoopLimit where we prove trip count is loop invariant).
(2) Scalar Evolution seems to have problems understanding trunc when computing loop trip count. So removing them allows better analysis performed in Scalar Evolution. (In particular this fixes PR 28363 which is the motivation for this change).

I am not going to perform any performance test. Any degradation caused by this should be an indication of a bug elsewhere.

To prove legality, we rely on SCEV to prove zext(trunc(IV)) == IV (or similarly for sext). If this holds, we can prove equivalence of trunc(IV)==ExitCnt (1) and IV == zext(ExitCnt). Simply take zext of boths sides of (1) and apply the proven equivalence.

https://reviews.llvm.org/D23075

llvm-svn: 278334
2016-08-11 13:51:20 +00:00