This patch adds simplification support for the BEXTR/BEXTRI intrinsics to match gcc. This only supports cases that fold to 0 or can be fully constant folded. Theoretically we could support converting to AND if the shift part is unused or to only a shift if the mask doesn't modify any bits after an equivalent shl. gcc doesn't do these transformations either.
I put this in InstCombine, but it could be done in InstSimplify. It would be the first target specific intrinsic in InstSimplify.
Differential Revision: https://reviews.llvm.org/D36063
llvm-svn: 309603
This patch refactors the code used in llc such that all the users of the
addPassesToEmitFile API have access to a homogeneous way of handling
start/stop-after/before options right out of the box.
In particular, just invoking addPassesToEmitFile will set the proper
pipeline without additional effort (modulo parsing a .mir file if the
start-before/after options are used.
NFC.
Differential Revision: https://reviews.llvm.org/D30913
llvm-svn: 309599
As noted in the code comment, transforming this in the other direction might require
a separate transform here in CGP given the block-at-a-time DAG constraint.
Besides that theoretical motivation, there are 2 practical motivations for the
subtract-of-cmps form:
1. The codegen for both x86 and PPC is better for this IR (though PPC could be better still).
There is discussion about canonicalizing IR to the select form
( http://lists.llvm.org/pipermail/llvm-dev/2017-July/114885.html ),
so we probably need to add DAG transforms for those patterns anyway, but this improves the
memcmp output without waiting for that step.
2. If we allow vector-sized chunks for the load and compare, x86 is better prepared to convert
that to optimal code when using subtract-of-cmps, so another prerequisite patch is avoided
if we choose to enable that.
Differential Revision: https://reviews.llvm.org/D34904
llvm-svn: 309597
These were taking priority over the aligned load instructions since there is no vmovda8/16. I don't think there is really a difference between aligned and unaligned on newer cpus so I don't think it matters which instructions we use.
But with this change we reduce the size of the isel table a little and we allow the aligned information to pass through to the evex->vec pass and produce the same output has avx/avx2 in some cases.
I also generally dislike patterns rooted in a bitcast which these were.
Differential Revision: https://reviews.llvm.org/D35977
llvm-svn: 309589
PR33883 shows that calls to intrinsic functions should not have their vector
arguments or returns subject to ABI changes required by the target.
This resolves PR33883.
Thanks to Alex Crichton for reporting the issue!
Reviewers: zoran.jovanovic, atanasyan
Differential Revision: https://reviews.llvm.org/D35765
llvm-svn: 309561
The Loop Vectorizer generates redundant operations when manipulating masks:
AND with true, OR with false, compare equal to true. Instead of relying on
a subsequent pass to clean them up, this patch avoids generating them.
Use null (no-mask) to represent all-one full masks, instead of a constant
all-one vector, following the convention of masked gathers and scatters.
Preparing for a follow-up VPlan patch in which these mask manipulating
operations are modeled using recipes.
Differential Revision: https://reviews.llvm.org/D35725
llvm-svn: 309558
Previously, the created object files for the import library were broken.
Write the symbol table before the string table. Simplify the code by
using a separate variable Prefix instead of duplicating a few lines.
Also update the coff-weak-exports to actually check that the generated
weak symbols can be found as intended.
Differential Revision: https://reviews.llvm.org/D36065
llvm-svn: 309555
Summary:
Without any information about the called function, we cannot be sure
that it is safe to interchange loops which contain function calls. For
example there could be dependences that prevent interchanging between
accesses in the called function and the loops. Even functions without any
parameters could cause problems, as they could access memory using
global pointers.
For now, I think it is only safe to interchange loops with calls marked
as readnone.
With this patch, the LLVM test suite passes with `-O3 -mllvm
-enable-loopinterchange` and LoopInterchangeProfitability::isProfitable
returning true for all loops. check-llvm and check-clang also pass when
bootstrapped in a similar fashion, although only 3 loops got
interchanged.
Reviewers: karthikthecool, blitz.opensource, hfinkel, mcrosier, mkuper
Reviewed By: mcrosier
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D35489
llvm-svn: 309547
Added patterns to recognize AND 1 on the mask of a scalar masked
move is not needed since only the lower bit is relevant for the
instruction.
Differential Revision:
https://reviews.llvm.org/D35897
llvm-svn: 309546
Missed the resetting base address selections when going from a base
address version to zero base address for non-base-addressed entries.
llvm-svn: 309529
(from comments in the test)
Group ranges in a range list that apply to the same section and use a base
address selection entry to reduce the number of relocations to one reloc per
section per range list. DWARF5 debug_rnglist will be more efficient than this
in terms of relocations, but it's still better than one reloc per entry in a
range list.
This is an object/executable size tradeoff - shrinking objects, but growing
the linked executable. In one large binary tested, total object size (not just
debug info) shrank by 16%, entirely relocation entries. Linked executable
grew by 4%. This was with compressed debug info in the objects, uncompressed
in the linked executable. Without compression in the objects, the win would be
smaller (the growth of debug_ranges itself would be more significant).
llvm-svn: 309526
Use `llvm-objdump -dwarf=frames` to dump the .eh_frame to validate the
output textually rather than compare the binary output. This makes it
easier to see what is being checked. NFC.
llvm-svn: 309524
If you've archived the DWP file somewhere it's probably useful to be
able to just tell llvm-symbolizer where it is when you're symbolizing
stack traces from the binary.
This only provides a mechanism for specifying a single DWP file, good if
you're symbolizing a program with a single DWP file, but it's likely if
the program is dynamically linked that you might have a DWP for each
dynamic library - in which case this feature won't help (at least as
it's surfaced in llvm-symbolizer for now) - in theory it could be
extended to specify a collection of DWP files that could all be
consulted for split CU hash resolution.
llvm-svn: 309498
Summary:
Most CPUs implementing AES fusion require instruction pairs of the form
AESE Vn, _
AESMC Vn, Vn
and
AESD Vn, _
AESIMC Vn, Vn
The constraint is added to AES(I)MC instructions which use the result of
an AES(E|D) instruction by using AES(I)MCTrr pseudo instructions, which
constraint source and destination registers to be the same.
A nice side effect of this change is that now all possible pairs are
scheduled back-to-back on the exynos-m1 for the misched-fusion-aes.ll
test case.
I had to update aes_load_store. The version I added initially was very
reduced and with the new constraint, AESE/AESMC could not be scheduled
back-to-back. I updated the test to be more realistic and still expose
the same scheduling problem as the initial test case.
Reviewers: t.p.northover, rengolin, evandro, kristof.beyls, silviu.baranga
Reviewed By: t.p.northover, evandro
Subscribers: aemerson, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D35299
llvm-svn: 309495
Summary:
This change gives a 0.25% speedup on execution time, a 0.82% improvement
in benchmark scores and a 0.20% increase in binary size on a Cortex-A53.
These numbers are the geomean results on a wide range of benchmarks from
the test-suite and a range of proprietary suites.
Reviewers: t.p.northover, aadg, silviu.baranga, mcrosier, rengolin
Reviewed By: rengolin
Subscribers: grimar, davide, aemerson, rengolin, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D35568
llvm-svn: 309494
If the return column is different, we cannot coalesce the CIE across the
FDEs. Add that to the key calculation. This ensures that we emit a
separate CIE.
llvm-svn: 309492
move test/Transforms/SimplifyCFG/disable-lookup-table.ll into test/Transforms/SimplifyCFG/X86/disable-lookup-table.ll to avoid test failure when X86 backend is not enabled
llvm-svn: 309487
This patch is in 2 parts:
1 - replace combineBT's use of SimplifyDemandedBits (hasOneUse only) with SelectionDAG::GetDemandedBits to more aggressively determine the lower bits used by BT.
2 - update SelectionDAG::GetDemandedBits to support ANY_EXTEND - if the demanded bits are only in the non-extended portion, then peek through and demand from the source value and then ANY_EXTEND that if we found a match.
Differential Revision: https://reviews.llvm.org/D35896
llvm-svn: 309486
Summary:
Now that SamplePGOSupport is part of PGOOpt, there are several places that need tweaking:
1. AddDiscriminator pass should *not* be invoked at ThinLTOBackend (as it's already invoked in the PreLink phase)
2. addPGOInstrPasses should only be invoked when either ProfileGenFile or ProfileUseFile is non-empty.
3. SampleProfileLoaderPass should only be invoked when SampleProfileFile is non-empty.
4. PGOIndirectCallPromotion should only be invoked in ProfileUse phase, or in ThinLTOBackend of SamplePGO.
Reviewers: chandlerc, tejohnson, davidxl
Reviewed By: chandlerc
Subscribers: sanjoy, mehdi_amini, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D36040
llvm-svn: 309478
Also refine the flat check to respect flat-for-global feature,
and constant fallback should check global handling, not
specifically MUBUF.
llvm-svn: 309471
Summary:
This exposes LTO's Conf.SampleProfile as a command line option
(-lto-sample-profile-file) for testing via the llvm-lto2 utility.
Reviewers: pcc, danielcdh
Subscribers: mehdi_amini, inglorion, llvm-commits
Differential Revision: https://reviews.llvm.org/D36030
llvm-svn: 309456
Summary:
Inlining threshold is increased by application of bonuses when the
callee has a single reachable basic block or is rich in vector
instructions. Similarly, inlining cost is reduced by applying a large
bonus when the last call to a static function is considered for
inlining. This patch disables the application of these bonuses when the
callsite or the callee is cold. The intention here is to prevent a large
cold callsite from being inlined to a non-cold caller that could prevent
the caller from being inlined. This is especially important when the
cold callsite is a last call to a static since the associated bonus is
very high.
Reviewers: chandlerc, davidxl
Subscribers: danielcdh, llvm-commits
Differential Revision: https://reviews.llvm.org/D35823
llvm-svn: 309441
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.
rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951
llvm-svn: 309426
The conditional tail call logic did the wrong thing when both
destinations of a conditional branch were the same:
BB#1: derived from LLVM BB %entry
Live Ins: %EFLAGS
Predecessors according to CFG: BB#0
JE_1 <BB#5>, %EFLAGS<imp-use,kill>
JMP_1 <BB#5>
BB#5: derived from LLVM BB %sw.epilog
Predecessors according to CFG: BB#1
TCRETURNdi64 <ga:@mergeable_conditional_tailcall>, 0, ...
We would fold the JE_1 to a TCRETURNdi64cc, and then remove our BB#5
successor. Then BB#5 would be deleted as it had no predecessors, leaving
a dangling "JMP_1 <BB#5>" reference behind to cause assertions later.
This patch checks that both conditional branch destinations are
different before doing the transform. The standard branch folding logic
is able to remove both the JMP_1 and the JE_1, and for my test case we
end up forming a better conditional tail call later.
Fixes PR33980
llvm-svn: 309422
This allows handling of a lot more of the interesting
cases in Blender. Most of the large functions unlikely
to be inlined have this pattern.
This is a special case for what clang emits for OpenCL 3
element vectors. Annoyingly, these are emitted as
<3 x elt>* pointers, but accessed as <4 x elt>* operations.
This also needs to handle cases where a struct containing
a single vector is used.
llvm-svn: 309419
It is better to return arguments directly in registers
if we are making a call rather than introducing expensive
stack usage. In one of sample compile from one of
Blender's many kernel variants, this fires on about
~20 different functions. Future improvements may be to
recognize simple cases where the pointer is indexing a small
array. This also fails when the store to the out argument
is in a separate block from the return, which happens in
a few of the Blender functions. This should also probably
be using MemorySSA which might help with that.
I'm not sure this is correct as a FunctionPass, but
MemoryDependenceAnalysis seems to not work with
a ModulePass.
I'm also not sure where it should run.I think it should
run before DeadArgumentElimination, so maybe either
EP_CGSCCOptimizerLate or EP_ScalarOptimizerLate.
llvm-svn: 309416
Summary:
LazyValueInfo currently computes the constant value of the switch condition through case edges, which allows the constant value to be propagated through the case edges.
But we have seen a case where a zero-extended value of the switch condition is used past case edges for which the constant propagation doesn't occur.
This patch adds a small logic to handle such a case in getEdgeValueLocal().
This is motivated by the Python 2.7 eval loop in PyEval_EvalFrameEx() where the lack of the constant propagation causes longer live ranges and more spill code than necessary.
With this patch, we see that the code size of PyEval_EvalFrameEx() decreases by ~5.4% and a performance test improves by ~4.6%.
Reviewers: wmi, dberlin, sanjoy
Reviewed By: sanjoy
Subscribers: davide, davidxl, llvm-commits
Differential Revision: https://reviews.llvm.org/D34822
llvm-svn: 309415
We need to pass something to functions for this to work.
It isn't derivable just from the kernarg segment pointer
because the implicit arguments are placed after the
kernel arguments.
Also fixes missing test for the intrinsic.
llvm-svn: 309398