We would fail to instantiate them when the surrounding function was
instantiated. Instantiate the class and add it's members to the list of
pending instantiations, they should be resolved when we are finished
with the function's body.
This fixes PR9685.
llvm-svn: 195827
The previous patches tried to deduce the correct function type. I now realize
this is not possible in general. Consider
class foo {
template <typename T> static void bar(T v);
};
extern template void foo::bar(const void *);
We will only know that bar is static after a lookup, so we have to handle this
in the template instantiation code.
This patch reverts my previous two changes (but not the tests) and instead
handles the issue in DeduceTemplateArguments.
llvm-svn: 195154
We only considered FieldDecl and CXXMethodDecl as appropriate which
would cause us to believe the IndirectFieldDecl corresponded to an
argument of it's field type instead of a pointer-to-member type.
This fixes PR17696.
llvm-svn: 193461
We would not identify pointer-to-member construction in a non-type
template argument if it was either a FieldDecl or a CXXMethodDecl.
However, this would incorrectly reject declarations that were injected
via an IndirectFieldDecl (e.g. a field inside of an anonymous union).
This fixes PR17657.
llvm-svn: 193203
Summary:
Enforce the rule in C++11 [temp.mem]p2 that local classes cannot have
member templates.
This fixes PR16947.
N.B. C++14 has slightly different wording to afford generic lambdas
declared inside of functions.
Fun fact: Some formulations of local classes with member templates
would cause clang to crash during Itanium mangling, such as the
following:
void outer_mem() {
struct Inner {
template <typename = void>
struct InnerTemplateClass {
static void itc_mem() {}
};
};
Inner::InnerTemplateClass<>::itc_mem();
}
Reviewers: eli.friedman, rsmith, doug.gregor, faisalv
Reviewed By: doug.gregor
CC: cfe-commits, ygao
Differential Revision: http://llvm-reviews.chandlerc.com/D1866
llvm-svn: 193144
The bool conversion operator on InstantiatingTemplate never added value and
only served to obfuscate the template instantiation routines.
This replaces the conversion and its callers with an explicit isInvalid()
function to make it clear what's going on at a glance.
llvm-svn: 192177
As requested when applying the same logic to calling conventions.
Reviewers: rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D1634
llvm-svn: 190441
Summary:
Calling conventions are inherited during decl merging. Before this
change, deduction would fail due to a type mismatch between the template
and the specialization. This change adjusts the CCs to match before
deduction, and lets the decl merging logic diagnose mismatch or inherit
the CC from the template.
This allows specializations of static member function templates in the
Microsoft C++ ABI.
Reviewers: rsmith
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1570
llvm-svn: 190377
Summary:
We would not perform substitution at an appropriate point, allowing strange
results to appear. We would accepts things that we shouldn't or mangle things incorrectly. Note that this hasn't fixed the other cases like
template-template parameters or non-type template parameters.
Reviewers: doug.gregor, rjmccall, rsmith
Reviewed By: rsmith
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1507
llvm-svn: 189540
- Some documenation were added.
- Usages of OpaquePtr<A>.getAsVal<A>() were replaced by OpaquePtr<A>.get().
- Methods getAs and getAsVal were renamed to getPtrTo and getPtrAs respectively.
llvm-svn: 189346
Summary:
There were two things known to be wrong with our implementation of MSVC
mode template arguments:
- We didn't properly handle __uuidof/CXXUuidofExpr and skipped all type
checking completely.
- We didn't allow for MSVC's extension of allowing certain constant
"foldable" expressions from showing up in template arguments.
They allow various casts dereference and address-of operations.
We can make it more general as we find further peculiarities but this
is the known extent.
Reviewers: rsmith, doug.gregor, rjmccall
Reviewed By: doug.gregor
CC: cfe-commits, rnk
Differential Revision: http://llvm-reviews.chandlerc.com/D1444
llvm-svn: 189087
This was only used to ensure that the traversal order was the same as the
insertion order, but that guarantee was already being provided by the use
of a FoldingSetVector.
llvm-svn: 189075
Summary:
DeclRefExpr::getDecl gives us back a ValueDecl, this isa<> check will
never fire.
Reviewers: eli.friedman, doug.gregor, majnemer
Reviewed By: majnemer
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1434
llvm-svn: 188647
of local classes. We were previously handling this by performing qualified
lookup within a function declaration(!!); replace it with the proper scope
lookup.
llvm-svn: 188050
This patch essentially removes all the FIXMEs following calls to DeduceTemplateArguments() that want to keep track of deduction failure info.
llvm-svn: 186730
r186331).
Original commit log:
If we friend a declaration twice, that should not make it visible to
name lookup in the surrounding context. Slightly rework how we handle
friend declarations to inherit the visibility of the prior
declaration, rather than setting a friend declaration to be visible
whenever there was a prior declaration.
llvm-svn: 186546
This breaks the build of basic patterns with repeated friend
declarations. See the added test case in SemaCXX/friend.cpp or the test
case reported to the original commit log.
Original commit log:
If we friend a declaration twice, that should not make it visible to
name lookup in the surrounding context. Slightly rework how we handle
friend declarations to inherit the visibility of the prior
declaration, rather than setting a friend declaration to be visible
whenever there was a prior declaration.
llvm-svn: 186331
Original commit log:
If we friend a declaration twice, that should not make it visible to
name lookup in the surrounding context. Slightly rework how we handle
friend declarations to inherit the visibility of the prior
declaration, rather than setting a friend declaration to be visible
whenever there was a prior declaration.
llvm-svn: 186199
fix is.
Original commit log:
If we friend a declaration twice, that should not make it visible to
name lookup in the surrounding context. Slightly rework how we handle
friend declarations to inherit the visibility of the prior
declaration, rather than setting a friend declaration to be visible
whenever there was a prior declaration.
llvm-svn: 186185
lookup in the surrounding context. Slightly rework how we handle friend
declarations to inherit the visibility of the prior declaration, rather
than setting a friend declaration to be visible whenever there was a prior
declaration.
llvm-svn: 186040
substitution failed, report that as a substitution failure rather than
pretending that there was no default argument.
The test cases in PR15673 have exposed some pre-existing poor diagnostics here.
llvm-svn: 185604
The removal is tried by retrying the failed lookup of a correction
candidate with either the MemberContext or SS (CXXScopeSpecifier) or
both set to NULL if they weren't already. If the candidate identifier
is then looked up successfully, make a note in the candidate that the
SourceRange should include any existing nested name specifier even if
the candidate isn't adding a different one (i.e. the candidate has a
NULL NestedNameSpecifier).
Also tweak the diagnostic messages to differentiate between a suggestion
that just replaces the identifer but leaves the existing nested name
specifier intact and one that replaces the entire qualified identifier,
in cases where the suggested replacement is unqualified.
llvm-svn: 185487
A default template-argument shall not be specified in a friend template
declaration.
Interestingly, we properly handled default template arguments on friend
class members but not on just friend classes.
llvm-svn: 184882
Otherwise ClassTemplateSpecializationDecl::getSourceRange() will mistakenly consider itself as an implicit partial specialization
and lead to a crash.
Fixes rdar://14063074
llvm-svn: 183325
This patch renames getLinkage to getLinkageInternal. Only code that
needs to handle UniqueExternalLinkage specially should call this.
Linkage, as defined in the c++ standard, is provided by
getFormalLinkage. It maps UniqueExternalLinkage to ExternalLinkage.
Most places in the compiler actually want isExternallyVisible, which
handles UniqueExternalLinkage as internal.
llvm-svn: 181677
Otherwise the source range of the explicit instantiation may become invalid (begin location will be after the end location).
rdar://13706991
llvm-svn: 180070
http://lab.llvm.org:8011/builders/clang-x86_64-darwin10-gdb went back green
before it processed the reverted 178663, so it could not have been the culprit.
Revert "Revert 178663."
This reverts commit 4f8a3eb2ce5d4ba422483439e20c8cbb4d953a41.
llvm-svn: 178682
For variables and functions clang used to store two storage classes. The one
"as written" in the code and a patched one, which, for example, propagates
static to the following decls.
This apparently is from the days clang lacked linkage computation. It is now
redundant and this patch removes it.
llvm-svn: 178663
This was causing correctness issues for ARC and the static analyzer when a
function template has "consumed" Objective-C object parameters (i.e.
parameters that will be released by the function before returning).
The fix is threefold:
(1) Actually copy over the attributes from old ParmVarDecls to new ones.
(2) Have Sema::BuildFunctionType only work for building FunctionProtoTypes,
which it was doing anyway. This allows us to pass an ExtProtoInfo
instead of a plain ExtInfo and several flags.
(3) Drop param attributes as part of StripImplicitInstantiation, which is
used when an implicit instantiation is followed by an explicit one.
<rdar://problem/12685622>
llvm-svn: 176728
The TypeLoc hierarchy used the llvm::cast machinery to perform undefined
behavior by casting pointers/references to TypeLoc objects to derived types
and then using the derived copy constructors (or even returning pointers to
derived types that actually point to the original TypeLoc object).
Some context is in this thread:
http://lists.cs.uiuc.edu/pipermail/llvmdev/2012-December/056804.html
Though it's spread over a few months which can be hard to read in the mail
archive.
llvm-svn: 175462
says, but that's a defect (to be filed). "Cls::purevfn()" is still an odr use.
Also fixes a bug that caused us to not mark the function referenced just
because we didn't want to mark it odr used.
llvm-svn: 174242
parameters (per C++ [temp.param]p8) when computing the type of a
reference to a non-type template parameter. Fixes <rdar://problem/13000548>.
llvm-svn: 172585
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
type-name is looked up in the context of the complete postfix-expression. Don't
forget to pass the scope into this lookup when the type-name is a template-id;
it might name an alias template which can't be found within the class itself.
Bug spotted by Johannes Schaub on #llvm.
llvm-svn: 168011
When suggesting "foo::bar" as a correction for "fob::bar" we mistakenly
replaced only "bar" with "foo::bar" producing "fob::foo::bar" which was broken.
This corrects that replacement in as many places as I could find & provides
test cases for all those cases I could find a test case for. There are a couple
that don't seem to be reachable (one looks entirely dead, the other just
doesn't seem to ever get called with a namespace to namespace change).
Review by Richard Smith ( http://llvm-reviews.chandlerc.com/D57 ).
llvm-svn: 165817
enough information so we can mangle them correctly in cases involving
dependent parameter types. (This specifically impacts cases involving
null pointers and cases involving parameters of reference type.)
Fix the mangler to use this information instead of trying to scavenge
it out of the parameter declaration.
<rdar://problem/12296776>.
llvm-svn: 164656
unexpanded parameter pack is a pack expansion. Thus, as with a non-type template
parameter which is a pack expansion, it needs to be expanded early into a fixed
list of template parameters.
Since the expanded list of template parameters is not itself a parameter pack,
it is permitted to appear before the end of the template parameter list, so also
remove that restriction (for both template template parameter pack expansions and
non-type template parameter pack expansions).
llvm-svn: 163369
are not definitions. This follows the behavior of both gcc and earlier
versions of clang. Regression from r156531. <rdar://problem/12048621>.
llvm-svn: 161523
The only caveat is renumbering CXCommentKind enum for aesthetic reasons -- this
breaks libclang binary compatibility, but should not be a problem since API is
so new.
This also fixes PR13372 as a side-effect.
llvm-svn: 161087
as an array of its base class TemplateArgument. Switch the const
TemplateArgument* parameters of InstantiatingTemplate's constructors to
ArrayRef<TemplateArgument> to prevent this from happening again in the future.
llvm-svn: 160245
-ftemplate-depth limit. There are various ways to get an infinite (or merely
huge) stack of substitutions with no intervening instantiations. This is also
consistent with gcc's behavior.
llvm-svn: 159907
* Escaped "::" and "<" as needed in Doxygen comments;
* Marked up code examples with \code...\endcode;
* Documented a \param that is current, instead of a few that aren't;
* Fixed up some \file and \brief comments.
llvm-svn: 158562
* Removed \param comments for parameters that no longer exist;
* Fixed a "\para" typo to "\param";
* Escaped @, # and \ symbols as needed in Doxygen comments;
* Added use of \brief to output short summaries.
llvm-svn: 158498
* Escape #, < and @ symbols where Doxygen would try to interpret them;
* Fix several function param documentation where names had got out of sync;
* Delete param documentation referring to parameters that no longer exist.
llvm-svn: 158472
The integral APSInt value is now stored in a decomposed form and the backing
store for large values is allocated via the ASTContext. This way its not
leaked as TemplateArguments are never destructed when they are allocated in
the ASTContext. Since the integral data is immutable it is now shared between
instances, making copying TemplateArguments a trivial operation.
Currently getting the integral data out of a TemplateArgument requires creating
a new APSInt object. This is cheap when the value is small but can be expensive
if it's not. If this turns out to be an issue a more efficient accessor could
be added.
llvm-svn: 158150
candidate template ignored: substitution failed [with T = int]: no type named 'type' in 'std::enable_if<false, void>'
Instead, just say:
candidate template ignored: disabled by 'enable_if' [with T = int]
... and point at the enable_if condition which (we assume) failed.
This is applied to all cases where the user writes 'typename enable_if<...>::type' (optionally prefixed with a nested name specifier), and 'enable_if<...>' names a complete class type which does not have a member named 'type', and this results in a candidate function being ignored in a SFINAE context. Thus it catches 'std::enable_if', 'std::__1::enable_if', 'boost::enable_if' and 'llvm::enable_if'.
llvm-svn: 156463
Sema::ConvertToIntegralOrEnumerationType() from PartialDiagnostics to
abstract "diagnoser" classes. Not much of a win here, but we're
-several PartialDiagnostics.
llvm-svn: 156217
[basic.lookup.classref]p1 and p4, which concerns name lookup for
nested-name-specifiers and template names, respectively, in a member
access expression. C++98/03 forces us to look both in the scope of the
object and in the current scope, then compare the results. C++11 just
takes the result from the scope of the object, if something is
found. Fixes <rdar://problem/11328502>.
llvm-svn: 155935
pretend there was no previous declaration -- that can lead us to injecting
a class template (with no access specifier) into a class scope. Instead,
just avoid the problematic checks.
llvm-svn: 155303
up an elaborated type specifier in a friend declaration, only look for type
declarations, per [basic.lookup.elab]p2. If we know that the redeclaration
lookup for a friend class template in a dependent context finds a non-template,
don't delay the diagnostic to instantiation time.
llvm-svn: 155187
the nested-name-specifier (e.g., because it is dependent), do not
error even though we can't represent it in the AST at this point.
This is a horrible, horrible hack. The actual feature we still need to
implement (for C++98!) is covered by PR12292. However, we used to
silently accept this code, so when we recently started rejecting it we
caused some regressions (e.g., <rdar://problem/11147355>). This hack
brings us back to the passable-but-not-good state we had previously.
llvm-svn: 153752
concerning qualified declarator-ids. We now diagnose extraneous
qualification at namespace scope (which we had previously missed) and
diagnose these qualification errors for all kinds of declarations; it
was rather uneven before. Fixes <rdar://problem/11135644>.
llvm-svn: 153577
The deferred lookup table building step couldn't accurately tell which Decls
should be included in the lookup table, and consequently built different tables
in some cases.
Fix this by removing lazy building of DeclContext name lookup tables. In
practice, the laziness was frequently not worthwhile in C++, because we
performed lookup into most DeclContexts. In C, it had a bit more value,
since there is no qualified lookup.
In the place of lazy lookup table building, we simply don't build lookup tables
for function DeclContexts at all. Such name lookup tables are not useful, since
they don't capture the scoping information required to correctly perform name
lookup in a function scope.
The resulting performance delta is within the noise on my testing, but appears
to be a very slight win for C++ and a very slight loss for C. The C performance
can probably be recovered (if it is a measurable problem) by avoiding building
the lookup table for the translation unit.
llvm-svn: 152608
access expression is the start of a template-id, ignore function
templates found in the context of the entire postfix-expression. Fixes
PR11856.
llvm-svn: 152520
- getSourceRange().getBegin() is about as awesome a pattern as .copy().size().
I already killed the hot paths so this doesn't seem to impact performance on my
tests-of-the-day, but it is a much more sensible (and shorter) pattern.
llvm-svn: 152419
* Handle some situations where we should never make a decl more visible,
even when merging in an explicit visibility.
* Handle attributes in members of classes that are explicitly specialized.
Thanks Nico for the report and testing, Eric for the initial review, and dgregor
for the awesome test27 :-)
llvm-svn: 151236
explicit specialization of a function template, mark the instantiation as
constexpr if the specialization is, rather than requiring them to match.
llvm-svn: 151001
expressions. This is mostly a simple refact, splitting the main "start
a lambda expression" function into smaller chunks that are driven
either from the parser (Sema::ActOnLambdaExpr) or during AST
transformation (TreeTransform::TransformLambdaExpr). A few minor
interesting points:
- Added new entry points for TreeTransform, so that we can
explicitly establish the link between the lambda closure type in the
template and the lambda closure type in the instantiation.
- Added a bit into LambdaExpr specifying whether it had an explicit
result type or not. We should have had this anyway.
This code is 'lightly' tested.
llvm-svn: 150417
The new info is propagated to TSTLoc on template instantiation, getting rid of 3 FIXMEs in TreeTransform.h and another one Parser.cpp.
Simplified code in TypeSpecLocFiller visitor methods for DTSTLoc and DependentNameTypeLoc by removing what now seems to be dead code (adding corresponding assertions).
llvm-svn: 149923
value of class type, look for a unique conversion operator converting to
integral or unscoped enumeration type and use that. Implements [expr.const]p5.
Sema::VerifyIntegerConstantExpression now performs the conversion and returns
the converted result. Some important callers of Expr::isIntegralConstantExpr
have been switched over to using it (including all of those required for C++11
conformance); this switch brings a side-benefit of improved diagnostics and, in
several cases, simpler code. However, some language extensions and attributes
have not been moved across and will not perform implicit conversions on
constant expressions of literal class type where an ICE is required.
In passing, fix static_assert to perform a contextual conversion to bool on its
argument.
llvm-svn: 149776
template without a corresponding parameter pack, don't immediately
substitute the alias template. This is under discussion in the C++
committee, and may become ill-formed, but for now we match GCC.
llvm-svn: 149697
template. Such pack expansions can easily fail at template
instantiation time, if the expanded parameter packs are of the wrong
length. Fixes <rdar://problem/10040867>, PR9021, and the example that
came up today at Going Native.
llvm-svn: 149685
values and non-type template arguments of integral and enumeration types.
This change causes some legal C++98 code to no longer compile in C++11 mode, by
enforcing the C++11 rule that narrowing integral conversions are not permitted
in the final implicit conversion sequence for the above cases.
llvm-svn: 148439
we have a redeclarable type, and only use the new virtual versions
(getPreviousDeclImpl() and getMostRecentDeclImpl()) when we don't have
that type information. This keeps us from penalizing users with strict
type information (and is the moral equivalent of a "final" method).
Plus, settle on the names getPreviousDecl() and getMostRecentDecl()
throughout.
llvm-svn: 148187
virtual functions that provide previous/most recent redeclaration
information for any declaration. Use this to eliminate the redundant,
less efficient getPreviousDecl() functions.
llvm-svn: 148184
The change to SemaTemplateVariadic.cpp improves the typo correction
results in certain situations, while the change to SemaTemplate.cpp
does not change existing behavior.
llvm-svn: 148155
expression for an Objective-C object or pointer type, so that we don't
attempt to treat the member name as a template. Fixes
<rdar://problem/10672501>.
llvm-svn: 148028