All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
The machine scheduler (before register allocation) is enabled by default for
SystemZ.
The SelectionDAG scheduling preference now becomes source order scheduling
(was regpressure).
Review: Ulrich Weigand
https://reviews.llvm.org/D37977
llvm-svn: 315063
This patch series adds support for the IBM z14 processor. This part includes:
- Basic support for the new processor and its features.
- Support for new instructions (except vector 32-bit float and 128-bit float).
- CodeGen for new instructions, including new LLVM intrinsics.
- Scheduler description for the new processor.
- Detection of z14 as host processor.
Support for the new 32-bit vector float and 128-bit vector float
instructions is provided by separate patches.
llvm-svn: 308194
This adds all remaining instructions that were still missing, mostly
privileged and semi-privileged system-level instructions. These are
provided for use with the assembler and disassembler only.
This brings the LLVM assembler / disassembler to parity with the
GNU binutils tools.
llvm-svn: 306876
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
This adds assembler / disassembler support for the decimal
floating-point instructions. Since LLVM does not yet have
support for decimal float types, these cannot be used for
codegen at this point.
llvm-svn: 304203
This adds assembler support for the instructions provided by the
execution-hint facility (NIAI and BP(R)P). This required adding
support for the new relocation types for 12-bit and 24-bit PC-
relative offsets used by the BP(R)P instructions.
llvm-svn: 288031
This patch moves formation of LOC-type instructions from (late)
IfConversion to the early if-conversion pass, and in some cases
additionally creates them directly from select instructions
during DAG instruction selection.
To make early if-conversion work, the patch implements the
canInsertSelect / insertSelect callbacks. It also implements
the commuteInstructionImpl and FoldImmediate callbacks to
enable generation of the full range of LOC instructions.
Finally, the patch adds support for all instructions of the
load-store-on-condition-2 facility, which allows using LOC
instructions also for high registers.
Due to the use of the GRX32 register class to enable high registers,
we now also have to handle the cases where there are still no single
hardware instructions (conditional move from a low register to a high
register or vice versa). These are converted back to a branch sequence
after register allocation. Since the expandRAPseudos callback is not
allowed to create new basic blocks, this requires a simple new pass,
modelled after the ARM/AArch64 ExpandPseudos pass.
Overall, this patch causes significantly more LOC-type instructions
to be used, and results in a measurable performance improvement.
llvm-svn: 288028
This adds support for the LZRF/LZRG/LLZRGF instructions that were
added on z13, and uses them for code generation were appropriate.
SystemZDAGToDAGISel::tryRISBGZero is updated again to prefer LLZRGF
over RISBG where both would be possible.
llvm-svn: 286586
Summary: Add support for the z13 instructions LOCHI and LOCGHI which
conditionally load immediate values. Add target instruction info hooks so
that if conversion will allow predication of LHI/LGHI.
Author: RolandF
Reviewers: uweigand
Subscribers: zhanjunl
Commiting on behalf of Roland.
Differential Revision: http://reviews.llvm.org/D22117
llvm-svn: 275086
Summary:
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: rafael
Reviewed By: rafael
Subscribers: rafael, ted, jfb, llvm-commits, rengolin, jholewinski
Differential Revision: http://reviews.llvm.org/D10311
llvm-svn: 239467
This patch adds support for the z13 processor type and its vector facility,
and adds MC support for all new instructions provided by that facilily.
Apart from defining the new instructions, the main changes are:
- Adding VR128, VR64 and VR32 register classes.
- Making FP64 a subclass of VR64 and FP32 a subclass of VR32.
- Adding a D(V,B) addressing mode for scatter/gather operations
- Adding 1-, 2-, and 3-bit immediate operands for some 4-bit fields.
Until now all immediate operands have been the same width as the
underlying field (hence the assert->return change in decode[SU]ImmOperand).
In addition, sys::getHostCPUName is extended to detect running natively
on a z13 machine.
Based on a patch by Richard Sandiford.
llvm-svn: 236520
So far, we do not yet support any instruction specific to zEC12.
Most of the facilities added with zEC12 are indeed not very useful
to compiler code generation, but there is one exception: the
miscellaneous-extensions facility provides the RISBGN instruction,
which is a variant of RISBG that does not set the condition code.
Add support for this facility, MC support for RISBGN, and CodeGen
support for prefering RISBGN over RISBG on zEC12, unless we can
actually make use of the condition code set by RISBG.
llvm-svn: 233690
We already exploit a number of instructions specific to z196,
but not yet POPCNT. Add support for the population-count
facility, MC support for the POPCNT instruction, CodeGen
support for using POPCNT, and implement the getPopcntSupport
TargetTransformInfo hook.
llvm-svn: 233689
derived classes.
Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.
*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.
llvm-svn: 227113
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
One unusual feature of the z architecture is that the result of a
previous load can be reused indefinitely for subsequent loads, even if
a cache-coherent store to that location is performed by another CPU.
A special serializing instruction must be used if you want to force
a load to be reattempted.
Since volatile loads are not supposed to be omitted in this way,
we should insert a serializing instruction before each such load.
The same goes for atomic loads.
The patch implements this at the IR->DAG boundary, in a similar way
to atomic fences. It is a no-op for targets other than SystemZ.
llvm-svn: 196905
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file. The memory leaks in this version have been fixed. Thanks
Alexey for pointing them out.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 195064
This change is incorrect. If you delete virtual destructor of both a base class
and a subclass, then the following code:
Base *foo = new Child();
delete foo;
will not cause the destructor for members of Child class. As a result, I observe
plently of memory leaks. Notable examples I investigated are:
ObjectBuffer and ObjectBufferStream, AttributeImpl and StringSAttributeImpl.
llvm-svn: 194997
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 194865
useAA significantly improves the handling of vector code that has TBAA
information attached. It also helps other cases, as shown by the testsuite
changes here. The only real downside I've seen is that it interferes with
MergeConsecutiveStores. The problem is that that optimization works top
down, starting at the first store in the chain, and looks for cases where
the chain result is only used by a single related store. These related
stores don't alias, so useAA will have rewritten all the later stores to
use a different chain input (typically the same one as the first store).
I think the advantages outweigh the disadvantages though, so for now I've
just disabled alias analysis for the unaligned-01.ll test.
llvm-svn: 193521
These instructions are allowed to trap even if the condition is false,
so for now they are only used for "*ptr = (cond ? x : *ptr)"-style
constructs.
llvm-svn: 187111
This first step just adds definitions for SLLK, SRLK and SRAK.
The next patch will actually make use of them during codegen.
insn-bad.s tests that some form of error is reported when using these
instructions on z10. More work is needed to get the "instruction requires:
distinct-ops" that we'd ideally like, so I've stubbed that part out for now.
I'll come back and make it mandatory once the necessary changes are in.
llvm-svn: 186680
This adds the actual lib/Target/SystemZ target files necessary to
implement the SystemZ target. Note that at this point, the target
cannot yet be built since the configure bits are missing. Those
will be provided shortly by a follow-on patch.
This version of the patch incorporates feedback from reviews by
Chris Lattner and Anton Korobeynikov. Thanks to all reviewers!
Patch by Richard Sandiford.
llvm-svn: 181203
itineraries.
- Refactor TargetSubtarget to be based on MCSubtargetInfo.
- Change tablegen generated subtarget info to initialize MCSubtargetInfo
and hide more details from targets.
llvm-svn: 134257
be the first encoded as the first feature. It then uses the CPU name to look up
features / scheduling itineray even though clients know full well the CPU name
being used to query these properties.
The fix is to just have the clients explictly pass the CPU name!
llvm-svn: 134127
Module*.
Also, dropped uses of TargetMachine where unnecessary. The only target which
still takes a TargetMachine& is Mips, I would appreciate it if someone would
normalize this to match other targets.
llvm-svn: 77918