This patch aims to improve the code generation for float vector gather on POWER9.
Patterns have been implemented to utilize instructions that deliver improved
performance.
Patch by: Kamau Bridgeman
Differential Revision: https://reviews.llvm.org/D62908
Summary:
Sometimes the CPUSubtype determines the Triple::ArchType that must be used.
Add the subtype to the API's to allow targets that need this to correctly
identify the contents of the binary.
Reviewers: pete
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70345
Summary:
Pass down the already accessed ValueInfo to shouldPromoteLocalToGlobal,
to avoid an unnecessary extra index lookup.
Add some assertion checking to confirm we have a non-empty VI when
expected.
Also some misc cleanup, merging the two versions of
doImportAsDefinition, since one was only called by the other, and
unnecessarily passed in a member variable.
Reviewers: steven_wu, pcc, evgeny777
Reviewed By: evgeny777
Subscribers: mehdi_amini, inglorion, hiraditya, dexonsmith, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70337
SUMMARY:
implement printing out raw section data of xcoff objectfile for llvm-objdump
and option -D --disassemble-all option for llvm-objdump
Reviewers: Sean Fertile
Subscribers: rupprecht, seiyai,hiraditya
Differential Revision: https://reviews.llvm.org/D70255
Summary:
Clean up the code that does GV promotion in the ThinLTO backends.
Specifically, we don't need to check whether we are importing since that
is already checked and handled correctly in shouldPromoteLocalToGlobal.
Simply call shouldPromoteLocalToGlobal, and if it returns true we are
guaranteed that we are promoting, whether or not we are importing (or in
the exporting module). This also makes the handling in getName()
consistent with that in getLinkage(), which checks the DoPromote parameter
regardless of whether we are importing or exporting.
Reviewers: steven_wu, pcc, evgeny777
Subscribers: mehdi_amini, inglorion, hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70327
Previously we mutated the node and then converted it to a libcall. But this loses the chain information.
This patch keeps the chain, but unfortunately breaks tail call optimization as the functions involved in deciding if a node is in tail call position can't handle the chain. But correct ordering seems more important to be right.
Somehow the SystemZ tests improved. I looked at one of them and it seemed that we're handling the split vector elements in a different order and that made the copies work better.
Differential Revision: https://reviews.llvm.org/D70334
This implements a version of the predicateLoopExits transform from IndVarSimplify extended to exploit widenable conditions - and thus be much wider in scope of legality. The code structure ends up being almost entirely different, so I chose to duplicate this into the LoopPredication pass instead of trying to reuse the code in the IndVars.
The core notions of the transform are as follows:
If we have a widenable condition which controls entry into the loop, we're allowed to widen it arbitrarily. Given that, it's simply a *profitability* question as to what conditions to fold into the widenable branch.
To avoid pass ordering issues, we want to avoid widening cases that would otherwise be dischargeable. Or... widen in a form which can still be discharged. Thus, we phrase the transform as selecting one analyzeable exit from the set of analyzeable exits to keep. This avoids creating pass ordering complexities.
Since none of the above proves that we actually exit through our analyzeable exits - we might exit through something else entirely - we limit ourselves to cases where a) the latch is analyzeable and b) the latch is predicted taken, and c) the exit being removed is statically cold.
Differential Revision: https://reviews.llvm.org/D69830
and a follow-up NFC rearrangement as it's causing a crash on valid. Testcase is on the original review thread.
This reverts commits af57dbf12e and e6584b2b7b
Allow clients of the llvm library to opt-in to one-shot SIGPIPE
handling, instead of forcing them to undo llvm's SIGPIPE handler
registration (which is brittle).
The current behavior is preserved for all llvm-derived tools (except
lldb) by means of a default-`true` flag in the InitLLVM constructor.
This prevents "IO error" crashes in long-lived processes (lldb is the
motivating example) which both a) load llvm as a dynamic library and b)
*really* need to ignore SIGPIPE.
As llvm signal handlers can be installed when calling into libclang
(say, via RemoveFileOnSignal), thereby overriding a previous SIG_IGN for
SIGPIPE, there is no clean way to opt-out of "exit-on-SIGPIPE" in the
current model.
Differential Revision: https://reviews.llvm.org/D70277
This reapplies c0f6ad7d1f with an
additional fix in test/DebugInfo/X86/constant-loclist.ll, which had a
slightly different output on windows targets. The test now accounts for
this difference.
The original commit message follows.
Summary:
As discussed in D70081, this adds the ability to dump section
names/indices to the location list dumper. It does this by moving the
range specific logic from DWARFDie.cpp:dumpRanges into the
DWARFAddressRange class.
The trickiest part of this patch is the backflip in the meanings of the
two dump flags for the location list sections.
The dumping of "raw" location list data is now controlled by
"DisplayRawContents" flag. This frees up the "Verbose" flag to be used
to control whether we print the section index. Additionally, the
DisplayRawContents flag is set for section-based dumps whenever the
--verbose option is passed, but this is not done for the "inline" dumps.
Also note that the index dumping currently does not work for the DWARF
v5 location lists, as the parser does not fill out the appropriate
fields. This will be done in a separate patch.
Reviewers: dblaikie, probinson, JDevlieghere, SouraVX
Subscribers: sdardis, hiraditya, jrtc27, atanasyan, arphaman, aprantl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70227
* Implements scalable size queries for MVTs, split out from D53137.
* Contains a fix for FindMemType to avoid using scalable vector type
to contain non-scalable types.
* Explicit casts for several places where implicit integer sign
changes or promotion from 32 to 64 bits caused problems.
* CodeGenDAGPatterns will treat scalable and non-scalable vector types
as different.
Reviewers: greened, cameron.mcinally, sdesmalen, rovka
Reviewed By: rovka
Differential Revision: https://reviews.llvm.org/D66871
If you're writing C code using the ACLE MVE intrinsics that passes the
result of a vcmp as input to a predicated intrinsic, e.g.
mve_pred16_t pred = vcmpeqq(v1, v2);
v_out = vaddq_m(v_inactive, v3, v4, pred);
then clang's codegen for the compare intrinsic will create calls to
`@llvm.arm.mve.pred.v2i` to convert the output of `icmp` into an
`mve_pred16_t` integer representation, and then the next intrinsic
will call `@llvm.arm.mve.pred.i2v` to convert it straight back again.
This will be visible in the generated code as a `vmrs`/`vmsr` pair
that move the predicate value pointlessly out of `p0` and back into it again.
To prevent that, I've added InstCombine rules to remove round trips of
the form `v2i(i2v(x))` and `i2v(v2i(x))`. Also I've taught InstCombine
about the known and demanded bits of those intrinsics. As a result,
you now get just the generated code you wanted:
vpt.u16 eq, q1, q2
vaddt.u16 q0, q3, q4
Reviewers: ostannard, MarkMurrayARM, dmgreen
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70313
Provides support for using r6-r11 as globally scoped
register variables. This requires a -ffixed-rN flag
in order to reserve rN against general allocation.
If for a given GRV declaration the corresponding flag
is not found, or the the register in question is the
target's FP, we fail with a diagnostic.
Differential Revision: https://reviews.llvm.org/D68862
Summary:
As discussed in D70081, this adds the ability to dump section
names/indices to the location list dumper. It does this by moving the
range specific logic from DWARFDie.cpp:dumpRanges into the
DWARFAddressRange class.
The trickiest part of this patch is the backflip in the meanings of the
two dump flags for the location list sections.
The dumping of "raw" location list data is now controlled by
"DisplayRawContents" flag. This frees up the "Verbose" flag to be used
to control whether we print the section index. Additionally, the
DisplayRawContents flag is set for section-based dumps whenever the
--verbose option is passed, but this is not done for the "inline" dumps.
Also note that the index dumping currently does not work for the DWARF
v5 location lists, as the parser does not fill out the appropriate
fields. This will be done in a separate patch.
Reviewers: dblaikie, probinson, JDevlieghere, SouraVX
Subscribers: sdardis, hiraditya, jrtc27, atanasyan, arphaman, aprantl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70227
Summary:
This also adds testing of 32-bit V9 atomic lowering, splitting the
64-bit-only tests out into their own file.
Reviewers: venkatra, jyknight
Reviewed By: jyknight
Subscribers: hiraditya, fedor.sergeev, jfb, llvm-commits, glaubitz
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69352
These were both recently added. While the call to GetSoftenedFloat
is a little more optimal, we don't do it in the expand for
FP_TO_SINT/UINT so there's no real reason to do it here. This
avoids a FIXME for strict fp.
Split out a helper function for the individual call optimizations and
skip useless calls to it (where the instruction is not an ARC
intrinsic). Besides reducing indentation (and possibly speeding up
compile time in some small way), an upcoming patch will add additional
calls and expand out the `switch`.
This doesn't handle softening the input type, but we don't handle
softening any of the strict nodes yet. Skipping that made it easy
to reuse an existing function for creating a libcall from a node
with a chain.
Now, PPCPreIncPrep pass changes a loop to update form and update all load/store
with same base accordingly. We can do more for load/store with same base, for
example, convert load/store with same base to ds/dq form.
Reviewed by: jsji
Differential Revision: https://reviews.llvm.org/D67088
Before this we were emitting a bitcast to integer from the lowering
code that itself will need to be legalized. By calling
GetSoftenedFloat we get the integer conversion in one step without
needing to relegalize a bitcast.
This code isn't exercised, and was in the wrong place. If we need
this, we would need to promote the type before figuring out which
libcall to use.
I'm choosing to remove it rather than fixing since we don't
support PromoteFloat for LRINT/LROUND/LLRINT/LLROUND when the
result type is legal so I don't see much reason to support it
for the case where the result type isn't legal.
These too functions are were the same except for which libcall gets
emitted. Just merge them into one.
This is prep work for some other work including strict fp support.
Currently we miss folds with undef and identity values for binary ops
that do not fold to undef in general.
We can generalize the identity simplifications and do them before
checking for undef in particular.
Alive checks:
* OR - https://rise4fun.com/Alive/8OsK
* AND - https://rise4fun.com/Alive/e3tE
This will also allow us to remove some now redundant cases throughout
the function, but I would like to do this as follow-up. That should make
tracking down potential issues easier.
Reviewers: spatel, RKSimon, lebedev.ri
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D70169
Similar to/extension of D70208 (rGee0882bdf866), but this one
may finally allow closing motivating bugs.
This is another step towards having FMF apply only to FP values
rather than those + fcmp. See PR38086 for one of the original
discussions/motivations:
https://bugs.llvm.org/show_bug.cgi?id=38086
And the test here is derived from PR39535:
https://bugs.llvm.org/show_bug.cgi?id=39535
Currently, we lose FMF when converting any phi to select in
SimplifyCFG. There are a small number of similar changes needed
to correct within SimplifyCFG, so it should be quick to patch
this pass up.
FMF was extended to select and phi with:
D61917
D67564
Working on top of D69252, this adds canonicalisation patterns for ssub.with.overflow to ssub.sats.
Differential Revision: https://reviews.llvm.org/D69753
This adds to D69245, adding extra signed patterns for folding from a
sadd_with_overflow to a sadd_sat. These are more complex than the
unsigned patterns, as the overflow can occur in either direction.
For the add case, the positive overflow can only occur if both of the
values are positive (same for both the values being negative). So there
is an extra select on whether to use the positive or negative overflow
limit.
Differential Revision: https://reviews.llvm.org/D69252
This patch, adds support for DW_AT_alignment[DWARF5] attribute, to be emitted with typdef DIE.
When explicit alignment is specified.
Patch by Awanish Pandey <Awanish.Pandey@amd.com>
Reviewers: aprantl, dblaikie, jini.susan.george, SouraVX, alok,
deadalinx
Differential Revision: https://reviews.llvm.org/D70111
In MCObjectStreamer, when there is no current fragment, initially
symbols are created in a "pending" state and assigned to a dummy
empty fragment.
Previously, they were not being assigned an offset, and thus
evaluateAbsolute would fail if trying to evaluate an expression 'a -
b', where both 'a' and 'b' were in this pending state.
Also slightly refactored the EmitLabel overload which takes an
MCFragment for clarity.
Fixes: https://llvm.org/PR41825
Differential Revision: https://reviews.llvm.org/D70062
It was failing with
PerfJITEventListener.cpp:489:7: error: 'ManagedStatic' in namespace 'llvm' does not name a template type
llvm::ManagedStatic<PerfJITEventListener> PerfListener;
Summary:
We should check for same instruction class before checking whether they
have the same base address, else we might iterate out of bounds of a
MachineInstr operands list. The InstClass check is also cheaper.
This was introduced in SVN r373630.
Reviewers: tstellar
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68690
This only implements the non-dwo part, but loclistx is necessary to use
location lists in DWARFv5, so it's a precursor to that work - and
generally reduces relocations (only using one reloc, then
indexes/relative offsets for all location list references) in non-split
DWARF.
LLVM IR of 1-element vectors get lower into scalar in GISel. As a
result, shuffle vector may also produce a scalar.
This patch teaches the shuffle combiner how to deal with scalars when
they are in the destination type of a shuffle vector.
For now, we just support the easy case where this can be lowered to
a plain copy. For other cases, we leave the shuffle vector as is.
This type of IR are seen in O0 pipelines. E.g., as produced with
SingleSource/UnitTests/Vector/AArch64/aarch64_neon_intrinsics.c.
rdar://problem/57198904
It was added in 2014 in 732e0aa9fb with one use in Scalarizer.cpp.
That one use was then removed when porting to the new pass manager in
2018 in b6f76002d9.
While the RFC and the desire to get off of static initializers for
cl::opt all still stand, this code is now dead, and I think we should
delete this code until someone is ready to do the migration.
There were many clients of CommandLine.h that were it transitively
through LLVMContext.h, so I cleaned that up in 4c1a1d3cf9.
Reviewers: beanz
Differential Revision: https://reviews.llvm.org/D70280
This is another step towards having FMF apply only to FP values
rather than those + fcmp. See PR38086 for one of the original
discussions/motivations:
https://bugs.llvm.org/show_bug.cgi?id=38086
And the test here is derived from PR39535:
https://bugs.llvm.org/show_bug.cgi?id=39535
Currently, we lose FMF when converting any phi to select in
SimplifyCFG. There are a small number of similar changes needed
to correct within SimplifyCFG, so it should be quick to patch
this pass up.
FMF was extended to select and phi with:
D61917
D67564
Differential Revision: https://reviews.llvm.org/D70208
This patch makes LLVM compatible with GAS. It accepts `la` pseudo
instruction on arch with 64-bit pointers and just shows a warning.
Differential Revision: https://reviews.llvm.org/D70202
O32 ABI uses relocations in REL format. Relocation's addend is written
in place. R_MIPS_JALR relocation points to the `jalr` instruction which
does not have a place to store the relocation addend. So it's impossible
to save non-zero "offset". This patch blocks emission of `R_MIPS_JALR`
relocations in such cases.
Differential Revision: https://reviews.llvm.org/D70201
Ensure the stride and trip count have the same type before multiplying them during reference cost calculation
Reviewed By: jdoefert
Differential Revision: https://reviews.llvm.org/D70192
This is a patch to support D66328, which was reverted until this lands.
Enable a compiler-rt test that used to fail previously with D66328.
Differential Revision: https://reviews.llvm.org/D67283
This patch introduces a function pass to inject the scalar-to-vector
mappings stored in the TargetLIbraryInfo (TLI) into the Vector
Function ABI (VFABI) variants attribute.
The test is testing the injection for three vector libraries supported
by the TLI (Accelerate, SVML, MASSV).
The pass does not change any of the analysis associated to the
function.
Differential Revision: https://reviews.llvm.org/D70107
https://reviews.llvm.org/D70210
Previously:
Due to sensitivity of the algorithm with gaps, and extra instructions,
when diffing, often we see naming being off by a few. Makes the diff
unreadable even for tests with 7 and 8 instructions respectively.
Naming can change depending on candidates (and order of picking
candidates). Suddenly if there's one extra instruction somewhere, the
entire subtree would be named completely differently.
No consistent naming of similar instructions which occur in different
functions. If we try to do something like count the frequency
distribution of various differences across suite, then the above
sensitivity issues are going to result in poor results.
Instead:
Name instruction based on semantics of the instruction (hash of the
opcode and operands). Essentially for a given instruction that occurs in
any module/function it'll be named similarly (ie semantic). This has
some nice properties
Can easily look at many instructions and just check the hash and if
they're named similarly, then it's the same instruction. Makes it very
easy to spot the same instruction both multiple times, as well as across
many functions (useful for frequency distribution).
Independent of traversal/candidates/depth of graph. No need to keep
track of last index/gaps/skip count etc.
No off by few issues with diffs. I've tried the old vs new
implementation in files ranging from 30 to 700 instructions. In both
cases with the old algorithm, diffs are a sea of red, where as for the
semantic version, in both cases, the diffs line up beautifully.
Simplified implementation of the main loop (simple iteration) , no keep
track of what's visited and not.
Handle collision just by incrementing a counter. Roughly
bb[N]_hash_[CollisionCount].
Additionally with the new implementation, we can probably avoid doing
the hoisting of instructions to various places, as they'll likely be
named the same resulting in differences only based on collision (ie
regardless of whether the instruction is hoisted or not/close to use or
not, it'll be named the same hash which should result in use of the
instruction be identical with the only change being the collision count)
which is very easy to spot visually.
Summary:
As well as vector/vector compare instructions, MVE also has a family
of comparisons taking a vector and a scalar, which compare every lane
of the vector against the same value. We generate those at isel time
using isel patterns that match `(ARMvcmp vector, (ARMvdup scalar))`.
This commit adds corresponding patterns for the operand-reversed form
`(ARMvcmp (ARMvdup scalar), vector)`, with condition codes swapped as
necessary. That way, we can still generate the vector/scalar compare
instruction if the IR happens to have been rearranged to put the
operands the other way round, which can happen in some optimization
phases. Previously, a vcmp the other way round was handled by emitting
a `vdup` instruction to //explicitly// replicate the scalar input into
a vector, and then doing a vector/vector comparison.
I haven't added a new test, because it turned out that several
existing tests were already exhibiting that failure mode. So just
updating the expected output in the existing MVE codegen tests
demonstrates what's been improved.
Reviewers: ostannard, MarkMurrayARM, dmgreen
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70296
ValueInfo has user-defined 'operator bool' which allows incorrect implicit conversion
to GlobalValue::GUID (which is unsigned long). This causes bugs which are hard to
track and should be removed in future.
Enumerations that describe rounding mode and exception behavior were
defined inside ConstrainedFPIntrinsic. It makes sense to use the same
definitions to represent the same properties in other cases, not only
in constrained intrinsics. It was however inconvenient as required to
include constrained intrinsics definitions even if they were not needed.
Also using long scope prefix reduced readability.
This change moves these definitioins to the namespace llvm::fp.
No functional changes.
Differential Revision: https://reviews.llvm.org/D69552
Summary:
This adds a visitLocationList function to the DWARF v4 location lists,
similar to what already exists for DWARF v5. It follows the approach
outlined in previous patches (D69672), where the parsed form is always
stored in the DWARF v5 format, which makes it easier for generic code to
be built on top of that. v4 location lists are "upgraded" during
parsing, and then this upgrade is undone while dumping.
Both "inline" and section-based dumping is rewritten to reuse the
existing "generic" location list dumper. This means that the output
format is consistent for all location lists (the only thing one needs to
implement is the function which prints the "raw" form of a location
list), and that debug_loc dumping correctly processes base address
selection entries, etc.
The previous existing debug_loc functionality (e.g.,
parseOneLocationList) is rewritten on top of the new API, but it is not
removed as there is still code which uses them. This will be done in
follow-up patches, after I build the API to access the "interpreted"
location lists in a generic way (as that is what those users really
want).
Reviewers: dblaikie, probinson, JDevlieghere, aprantl, SouraVX
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69847
The SmallVector reserve() call in
MachineInstrExpressionTrait::getHashValue accounted for over 3% of all
calls to malloc() when I compiled a bunch of graphics shaders for the
AMDGPU target. Its initial size was only enough for machine instructions
with up to 7 operands, but for AMDGPU 8 and 10 operands are very common.
Here's a histogram of number of operands for each call to getHashValue,
gathered from the same collection of shaders:
1 13503
2 254273
3 135781
4 422508
5 614997
6 194953
7 287248
8 1517255
9 31218
10 1191269
11 70731
12 24
13 77
15 84
17 4692
27 16
33 705
49 6
Typical instructions with 8 and 10 operands are floating point
arithmetic and multiply-accumulate instructions like:
%83:vgpr_32 = V_MUL_F32_e64 0, killed %82:vgpr_32, 0, killed %81:vgpr_32, 0, 0, implicit $exec
%330:vgpr_32 = V_MAC_F32_e64 0, killed %327:vgpr_32, 0, killed %329:sgpr_32, 0, %328:vgpr_32(tied-def 0), 0, 0, implicit $exec
Differential Revision: https://reviews.llvm.org/D70301
This is a follow up of d90804d, to also flag fmcp instructions as instructions
that we do not support in tail-predicated vector loops.
Differential Revision: https://reviews.llvm.org/D70295
Introduce IntImmLeaf version of PatLeaf immZExt16 for 32-bit immediates.
Change immZExt16 with imm32ZExt16 for andi, ori and xori.
This keeps same behavior for SDAG and allows for GlobalISel selectImpl
to select 'G_CONSTANT imm' + G_AND, G_OR, G_XOR into ANDi, ORi, XORi,
respectively, when 32-bit imm satisfies imm32ZExt16 predicate: zero
extending 16 low bits of imm is equal to imm.
Large number of test changes comes from zero extending of small types
which is transformed into 'and' with bitmask in legalizer.
Differential Revision:https://reviews.llvm.org/D70185
Introduce IntImmLeaf version of PatLeaf immSExt16 for 32-bit immediates.
Change immSExt16 with imm32SExt16 for addiu.
This keeps same behavior for SDAG and allows for GlobalISel selectImpl
to select 'G_CONSTANT imm' + G_ADD into ADDIu when 32-bit imm satisfies
imm32SExt16 predicate: sign extending 16 low bits of imm is equal to imm.
Differential Revision: https://reviews.llvm.org/D70184
Summary:
When scalarizing PHI nodes we might try to examine/rewrite
InsertElement nodes in predecessors. If those predecessors
are unreachable from entry, then the IR in those blocks could
have unexpected properties resulting in infinite loops in
Scatterer::operator[].
By simply treating values originating from instructions in
unreachable blocks as undef we do not need to analyse them
further.
This fixes PR41723.
Reviewers: bjope
Reviewed By: bjope
Subscribers: bjope, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70171
It was failing with
llvm/lib/ExecutionEngine/Orc/DebugUtils.cpp:56:10:
error: could not convert ‘Obj’ from ‘std::unique_ptr<llvm::MemoryBuffer>’
to ‘llvm::Expected<std::unique_ptr<llvm::MemoryBuffer> >’
return Obj;
^
The usage of target boolean checks is overly inflexible, since sext
and zext of a compare are equally cheap. The choice is arbitrary, but
using 0/1 to some degree is the choice of lower resistance since
that's what most targets use. This enables a few combines that don't
bother to support ZeroOrNegativeOneBooleanContent.
Adds a DumpObjects utility that can be used to dump JIT'd objects to disk.
Instances of DebugObjects may be used by ObjectTransformLayer as no-op
transforms.
This patch also adds an ObjectTransformLayer to LLJIT and an example of how
to use this utility to dump JIT'd objects in LLJIT.
getFirstNonPHI iterates over all the instructions in a block until it
finds a non-PHI.
Then, the loop starts from the beginning of the block and goes through
all the instructions until it reaches the instruction found by
getFirstNonPHI.
Instead of doing that, just stop when a non-PHI is found.
This reduces the compile-time of a test case discussed in
https://reviews.llvm.org/D47023 by 13x.
Not entirely sure how to come up with a test case for this since it's a
compile time issue that would significantly slow down running the tests.
Differential Revision: https://reviews.llvm.org/D70016
Summary: This is a bug fix for further issues in PR43585.
Reviewers: rnk, RKSimon, craig.topper, andrew.w.kaylor
Subscribers: hiraditya, llvm-commits, annita.zhang
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70224
This reverts commit e511c4b0dff1692c267addf17dce3cebe8f97faa:
Temporarily Revert:
"[SLP] Generalization of stores vectorization."
"[SLP] Fix -Wunused-variable. NFC"
"[SLP] Vectorize jumbled stores."
after fixing the problem with compile time.
Allow call site paramter descriptions to reference spill slots. Spill
slots are not visible to high-level LLVM IR, so they can safely be
referenced during entry value evaluation (as they cannot be clobbered by
some other function).
This gives a 5% increase in the number of call site parameter DIEs in an
LTO x86_64 build of the xnu kernel.
This reverts commit eb4c98ca3d (
[DebugInfo] Exclude memory location values as parameter entry values),
effectively reintroducing the portion of D60716 which dealt with memory
locations (authored by Djordje, Nikola, Ananth, and Ivan).
This partially addresses llvm.org/PR43343. However, not all memory
operands forwarded to callees live in spill slots. In the xnu build, it
may be possible to use an escape analysis to increase the number of call
site parameter by another 15% (more details in PR43343).
Differential Revision: https://reviews.llvm.org/D70254
Summary:
The tool does not correctly handle COFF sections with extended relocation tables (with IMAGE_SCN_LNK_NRELOC_OVFL bit set), this patch fixes this problem.
But I have cheated a bit in the test (to make it smaller) because extended relocation table is supposed to be used when the number of relocations exceeds 65534. Otherwise the test size would be pretty big.
Reviewers: jhenderson, MaskRay, mstorsjo
Reviewed By: mstorsjo
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70251
The conditional instructions that are translated to mux instructions
are deleted and the iterators to these deleted instructions are being
used later. This patch fixed this issue.
Summary:
The RISC-V backend used to generate `add <reg>, x0, <reg>` in a few
instances. It seems most places no longer generate this sequence.
This is semantically equivalent to `addi <reg>, <reg>, 0`, but the
latter has the advantage of being noted to be the canonical instruction
to be used for moves (which microarchitectures can and should recognise
as such).
The changed testcases use instruction aliases - `mv <reg>, <reg>` is an
alias for `addi <reg>, <reg>, 0`.
Reviewers: luismarques
Reviewed By: luismarques
Subscribers: hiraditya, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, kito-cheng, shiva0217, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, sameer.abuasal, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70124
Summary: Removes CFI CFA directives that could incorrectly propagate
beyond the basic block they were inteded for. Specifically it removes
the epilogue CFI directives. See the branch_and_tail_call test for an
example of the issue. Should fix the stack unwinding issues caused by
the incorrect directives.
Reviewers: asb, lenary, shiva0217
Reviewed By: lenary
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69723
We were previously pushing all intrinsics used in a function to the
worklist. This is wasteful for memory in a function with a lot of
intrinsics.
We also ask TTI if we should expand every intrinsic, but we only
have expansion support for the reduction intrinsics. This just
wastes time for the non-reduction intrinsics.
This patch only pushes reduction intrinsics into the worklist and
skips other intrinsics.
Differential Revision: https://reviews.llvm.org/D69470
I reviewed the diff hunks of 05da2fe521 that don't contain
'#include' lines, and found two unintended changes. I deleted a header
banner inadvertently while inserting a header, and changed the
indentation of a constructor in an odd way. Add back the banner, and
reformat the constructor.
Keys in a virtual file system can be in Posix or Windows form or even
a combination of the two. Many VFS tests (and a few Clang tests) were
XFAILed on Windows because of false negatives when comparing paths.
First, we default CaseSenstive to false on Windows. This allows
drive letters like "D:" to match "d:". Windows filesystems are, by
default, case insensitive, so this makes sense even beyond the drive
letter.
Second, we allow slashes to match backslashes when they're used as the
root component of a path.
Both of these changes are limited to RedirectingFileSystems, so there's
little chance of affecting other path handling.
These changes allow eleven of the VFS tests to pass on Windows as well
as three other Clang tests, so they have re-enabled.
This solves the majority of PR43272. Additional VFS test failures will
be fixed in separate patches.
Differential Revision: https://reviews.llvm.org/D69958
/proc/curproc/file and the KERN_PROC_PATHNAME sysctl may not return the
desired path if there are multiple hardlinks to the file, or if the path has
expired from the namecache.
Reviewed By: theraven
Differential Revision: https://reviews.llvm.org/D70198