See http://lists.llvm.org/pipermail/llvm-dev/2019-February/130583.html
and D60242 for the lld partition feature.
This patch:
* Teaches yaml2obj to parse the 3 section types.
* Teaches llvm-readobj/llvm-readelf to dump the 3 section types.
There is no test for SHT_LLVM_DEPENDENT_LIBRARIES in llvm-readobj. Add
it as well.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D67228
llvm-svn: 371157
The errors coming from ELF.h are usually not very
useful because they are uninformative. This patch is a
first step to improve the situation.
I tested this patch with a run of check-llvm and found
that few messages are untested. In this patch, I did not
add more tests but marked all such cases with a "TODO" comment.
For all tested messages I extended the error text to
provide more details (see test cases changed).
Differential revision: https://reviews.llvm.org/D64014
llvm-svn: 365183
ELF for the 64-bit Arm Architecture defines two processor-specific dynamic
tags:
DT_AARCH64_BTI_PLT 0x70000001, d_val
DT_AARCH64_PAC_PLT 0x70000003, d_val
These presence of these tags indicate that PLT sequences have been
protected using Branch Target Identification and Pointer Authentication
respectively. The presence of both indicates that the PLT sequences have
been protected with both Branch Target Identification and Pointer
Authentication.
This patch adds the tags and tests for llvm-readobj and yaml2obj.
As some of the processor specific dynamic tags overlap, this patch splits
them up, keeping their original default value if they were not previously
mentioned explicitly in a switch case.
Differential Revision: https://reviews.llvm.org/D62596
llvm-svn: 362493
This patch implements a limited form of autolinking primarily designed to allow
either the --dependent-library compiler option, or "comment lib" pragmas (
https://docs.microsoft.com/en-us/cpp/preprocessor/comment-c-cpp?view=vs-2017) in
C/C++ e.g. #pragma comment(lib, "foo"), to cause an ELF linker to automatically
add the specified library to the link when processing the input file generated
by the compiler.
Currently this extension is unique to LLVM and LLD. However, care has been taken
to design this feature so that it could be supported by other ELF linkers.
The design goals were to provide:
- A simple linking model for developers to reason about.
- The ability to to override autolinking from the linker command line.
- Source code compatibility, where possible, with "comment lib" pragmas in other
environments (MSVC in particular).
Dependent library support is implemented differently for ELF platforms than on
the other platforms. Primarily this difference is that on ELF we pass the
dependent library specifiers directly to the linker without manipulating them.
This is in contrast to other platforms where they are mapped to a specific
linker option by the compiler. This difference is a result of the greater
variety of ELF linkers and the fact that ELF linkers tend to handle libraries in
a more complicated fashion than on other platforms. This forces us to defer
handling the specifiers to the linker.
In order to achieve a level of source code compatibility with other platforms
we have restricted this feature to work with libraries that meet the following
"reasonable" requirements:
1. There are no competing defined symbols in a given set of libraries, or
if they exist, the program owner doesn't care which is linked to their
program.
2. There may be circular dependencies between libraries.
The binary representation is a mergeable string section (SHF_MERGE,
SHF_STRINGS), called .deplibs, with custom type SHT_LLVM_DEPENDENT_LIBRARIES
(0x6fff4c04). The compiler forms this section by concatenating the arguments of
the "comment lib" pragmas and --dependent-library options in the order they are
encountered. Partial (-r, -Ur) links are handled by concatenating .deplibs
sections with the normal mergeable string section rules. As an example, #pragma
comment(lib, "foo") would result in:
.section ".deplibs","MS",@llvm_dependent_libraries,1
.asciz "foo"
For LTO, equivalent information to the contents of a the .deplibs section can be
retrieved by the LLD for bitcode input files.
LLD processes the dependent library specifiers in the following way:
1. Dependent libraries which are found from the specifiers in .deplibs sections
of relocatable object files are added when the linker decides to include that
file (which could itself be in a library) in the link. Dependent libraries
behave as if they were appended to the command line after all other options. As
a consequence the set of dependent libraries are searched last to resolve
symbols.
2. It is an error if a file cannot be found for a given specifier.
3. Any command line options in effect at the end of the command line parsing apply
to the dependent libraries, e.g. --whole-archive.
4. The linker tries to add a library or relocatable object file from each of the
strings in a .deplibs section by; first, handling the string as if it was
specified on the command line; second, by looking for the string in each of the
library search paths in turn; third, by looking for a lib<string>.a or
lib<string>.so (depending on the current mode of the linker) in each of the
library search paths.
5. A new command line option --no-dependent-libraries tells LLD to ignore the
dependent libraries.
Rationale for the above points:
1. Adding the dependent libraries last makes the process simple to understand
from a developers perspective. All linkers are able to implement this scheme.
2. Error-ing for libraries that are not found seems like better behavior than
failing the link during symbol resolution.
3. It seems useful for the user to be able to apply command line options which
will affect all of the dependent libraries. There is a potential problem of
surprise for developers, who might not realize that these options would apply
to these "invisible" input files; however, despite the potential for surprise,
this is easy for developers to reason about and gives developers the control
that they may require.
4. This algorithm takes into account all of the different ways that ELF linkers
find input files. The different search methods are tried by the linker in most
obvious to least obvious order.
5. I considered adding finer grained control over which dependent libraries were
ignored (e.g. MSVC has /nodefaultlib:<library>); however, I concluded that this
is not necessary: if finer control is required developers can fall back to using
the command line directly.
RFC thread: http://lists.llvm.org/pipermail/llvm-dev/2019-March/131004.html.
Differential Revision: https://reviews.llvm.org/D60274
llvm-svn: 360984
Add break statements in Object/ELF.cpp since the code should consider the
generic tags for Hexagon, MIPS, and PPC. Add a test (copied from llvm-readobj)
to show that this works correctly (earlier versions of this patch would have
asserted).
The warnings in X86ELFObjectWriter.cpp are actually false-positives since
the nested switch() handles all possible values and returns in all cases.
Make this explicit by adding llvm_unreachable's.
Differential Revision: https://reviews.llvm.org/D58837
llvm-svn: 356037
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
The two utility functions were added in D47919 to support SHT_RELR.
However, these are just relative relocations types and are't
necessarily be named Relr.
Reviewers: phosek, dberris
Reviewed By: dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D55691
llvm-svn: 349133
Reapply r346374 with the fixes for modules build.
Original summary:
This change implements assembler parser, code emitter, ELF object writer
and disassembler for the MSP430 ISA. Also, more instruction forms are added
to the target description.
Patch by Michael Skvortsov!
llvm-svn: 346948
Summary:
This change implements assembler parser, code emitter, ELF object writer
and disassembler for the MSP430 ISA. Also, more instruction forms are added
to the target description.
Reviewers: asl
Reviewed By: asl
Subscribers: pftbest, krisb, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D53661
llvm-svn: 346374
If a relocation group doesn't have the RELOCATION_GROUP_HAS_ADDEND_FLAG set, then this implies the group's addend equals zero.
In this case android packed format won't encode an explicit addend delta, instead we need to set Addend, the "previous addend" variable, to zero by ourself.
Patch by Yi-Yo Chiang!
Differential Revision: https://reviews.llvm.org/D50601
llvm-svn: 339799
This support was partial and temporary. Now that we have
wasm object file support its no longer needed.
Differential Revision: https://reviews.llvm.org/D48744
llvm-svn: 337222
This change adds experimental support for SHT_RELR sections, proposed
here: https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
Definitions for the new ELF section type and dynamic array tags, as well
as the encoding used in the new section are all under discussion and are
subject to change. Use with caution!
Author: rahulchaudhry
Differential Revision: https://reviews.llvm.org/D47919
llvm-svn: 335922
Object FIle Representation
At codegen time this is emitted into the ELF file a pair of symbol indices and a weight. In assembly it looks like:
.cg_profile a, b, 32
.cg_profile freq, a, 11
.cg_profile freq, b, 20
When writing an ELF file these are put into a SHT_LLVM_CALL_GRAPH_PROFILE (0x6fff4c02) section as (uint32_t, uint32_t, uint64_t) tuples as (from symbol index, to symbol index, weight).
Differential Revision: https://reviews.llvm.org/D44965
llvm-svn: 333823
Introduce an extension to support passing linker options to the linker.
These would be ignored by older linkers, but newer linkers which support
this feature would be able to process the linker.
Emit a special discarded section `.linker-option`. The content of this
section is a pair of strings (key, value). The key is a type identifier for
the parameter. This allows for an argument free parameter that will be
processed by the linker with the value being the parameter. As an example,
`lib` identifies a library to be linked against, traditionally the `-l`
argument for Unix-based linkers with the parameter being the library name.
Thanks to James Henderson, Cary Coutant, Rafael Espinolda, Sean Silva
for the valuable discussion on the design of this feature.
llvm-svn: 323783
The Android relocation packing format is a more compact
format for dynamic relocations in executables and DSOs
that is based on delta encoding and SLEBs. An overview
of the format can be found in the Android source code:
https://android.googlesource.com/platform/bionic/+/refs/heads/master/tools/relocation_packer/src/delta_encoder.h
This patch implements relocation packing using that format.
This implementation uses a more intelligent algorithm for compressing
relative relocations than Android's own relocation packer. As a
result it can generally create smaller relocation sections than
that packer. If I link Chromium for Android targeting ARM32 I get a
.rel.dyn of size 174693 bytes, as compared to 371832 bytes with gold
and the Android packer.
Differential Revision: https://reviews.llvm.org/D39152
llvm-svn: 316775
This is in preparation for testing lld's upcoming relocation packing
feature (D39152). I have verified that this implementation correctly
unpacks the relocations from a Chromium DSO built with gold and the
Android relocation packer for ARM32 and ARM64.
Differential Revision: https://reviews.llvm.org/D39272
llvm-svn: 316543
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
This is motivated by https://reviews.llvm.org/D32488 where I am trying
to add printing of the section type for incompatible sections to LLD
error messages. This patch allows us to use the same code in
llvm-readobj and LLD instead of duplicating the function inside LLD.
Patch by Alexander Richardson!
llvm-svn: 301921
Add the necessary definitions for RISC-V ELF files, including relocs. Also
make necessary trivial change to ELFYaml, llvm-objdump, and llvm-readobj in
order to work with RISC-V ELFs.
Differential Revision: https://reviews.llvm.org/D23557
llvm-svn: 285708
The same value for EM_BPF is being propagated to glibc,
elfutils, and binutils.
Signed-off-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 275633
A request has been made to the official registry, but an official value is
not yet available. This patch uses a temporary value in order to support
development. When an official value is recieved, the value of EM_WEBASSEMBLY
will be updated.
llvm-svn: 257517
We can now use the ELF relocation .def files to create the mapping
of relocation numbers to names and avoid having to duplicate the
list of relocations.
Patch by Will Newton.
llvm-svn: 222566
This adds initial support for PPC32 ELF PIC (Position Independent Code; the
-fPIC variety), thus rectifying a long-standing deficiency in the PowerPC
backend.
Patch by Justin Hibbits!
llvm-svn: 213427
* ELFTypes.h contains template magic for defining types based on endianess, size, and alignment.
* ELFFile.h defines the ELFFile class which provides low level ELF specific access.
* ELFObjectFile.h contains ELFObjectFile which uses ELFFile to implement the ObjectFile interface.
llvm-svn: 188022