Asan does not use metadata with primary allocators.
It should match AP64::kMetadataSize whic is 0.
Depends on D86917.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D86919
There are no know bugs related to this, still it may fix some latent ones.
Main concerns with preexisting code:
1. Inconsistent atomic/non-atomic access to the same field.
2. Assumption that bitfield chunk_state is always the first byte without
even taking into account endianness.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D86917
As requested in the review, this patch removes the additional conditions in
the `COMPILER_RT_HAS_VERSION_SCRIPT` tests.
Tested on `amd64-pc-solaris2.11` and `x86_64-pc-linux-gnu`.
Differential Revision: https://reviews.llvm.org/D84559
Neither the Illumos `ld` nor the Solaris 11.3 one support the `--version-script` and
`z gnu-linker-script-compat` options, which breaks the `compiler-rt` build.
This patch checks for both options instead of hardcoding their use.
Tested on `amd-pc-solaris2.11` (all of Solaris 11.4, 11.3, and Illumos).
Differential Revision: https://reviews.llvm.org/D84559
This CL allows asan allocator in fuchsia to decommit shadow memory
for memory allocated using mmap.
Big allocations in asan end up being allocated via `mmap` and freed with
`munmap`. However, when that memory is freed, asan returns the
corresponding shadow memory back to the OS via a call to
`ReleaseMemoryPagesToOs`.
In fuchsia, `ReleaseMemoryPagesToOs` is a no-op: to be able to free
memory back to the OS, you have to hold a handle to the vmo you want to
modify, which is tricky at the ReleaseMemoryPagesToOs level as that
function is not exclusively used for shadow memory.
The function `__sanitizer_fill_shadow` fills a given shadow memory range
with a specific value, and if that value is 0 (unpoison) and the memory
range is bigger than a threshold parameter, it will decommit that memory
if it is all zeroes.
This CL modifies the `FlushUnneededASanShadowMemory` function in
`asan_poisoning.cpp` to add a call to `__sanitizer_fill_shadow` with
value and threshold = 0. This way, all the unneeded shadow memory gets
returned back to the OS.
A test for this behavior can be found in fxrev.dev/391974
Differential Revision: https://reviews.llvm.org/D80355
Change-Id: Id6dd85693e78a222f0329d5b2201e0da753e01c0
This is needed because macOS on Apple Silicon has some reserved pages inside the "regular" shadow memory location, and mapping over that location fails.
Differential Revision: https://reviews.llvm.org/D82912
Summary:
This refactors some common support related to shadow memory setup from
asan and hwasan into sanitizer_common. This should not only reduce code
duplication but also make these facilities available for new compiler-rt
uses (e.g. heap profiling).
In most cases the separate copies of the code were either identical, or
at least functionally identical. A few notes:
In ProtectGap, the asan version checked the address against an upper
bound (kZeroBaseMaxShadowStart, which is (2^18). I have created a copy
of kZeroBaseMaxShadowStart in hwasan_mapping.h, with the same value, as
it isn't clear why that code should not do the same check. If it
shouldn't, I can remove this and guard this check so that it only
happens for asan.
In asan's InitializeShadowMemory, in the dynamic shadow case it was
setting __asan_shadow_memory_dynamic_address to 0 (which then sets both
macro SHADOW_OFFSET as well as macro kLowShadowBeg to 0) before calling
FindDynamicShadowStart(). AFAICT this is only needed because
FindDynamicShadowStart utilizes kHighShadowEnd to
get the shadow size, and kHighShadowEnd is a macro invoking
MEM_TO_SHADOW(kHighMemEnd) which in turn invokes:
(((kHighMemEnd) >> SHADOW_SCALE) + (SHADOW_OFFSET))
I.e. it computes the shadow space needed by kHighMemEnd (the shift), and
adds the offset. Since we only want the shadow space here, the earlier
setting of SHADOW_OFFSET to 0 via __asan_shadow_memory_dynamic_address
accomplishes this. In the hwasan version, it simply gets the shadow
space via "MemToShadowSize(kHighMemEnd)", where MemToShadowSize just
does the shift. I've simplified the asan handling to do the same
thing, and therefore was able to remove the setting of the SHADOW_OFFSET
via __asan_shadow_memory_dynamic_address to 0.
Reviewers: vitalybuka, kcc, eugenis
Subscribers: dberris, #sanitizers, llvm-commits, davidxl
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D83247
Summary:
Before unwinding the stack, `__asan_handle_no_return` is supposed to
unpoison the entire stack - that is, remove the entries in the shadow
memory corresponding to stack (e.g. redzone markers around variables).
This does not work correctly if `__asan_handle_no_return` is called from
the alternate stack used in signal handlers, because the stack top is
read from a cache, which yields the default stack top instead of the
signal alternate stack top.
It is also possible to jump between the default stack and the signal
alternate stack. Therefore, __asan_handle_no_return needs to unpoison
both.
Reviewers: vitalybuka, kubamracek, kcc, eugenis
Reviewed By: vitalybuka
Subscribers: phosek, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D76986
Summary: This adds a customization point to support unpoisoning of signal alternate stacks on POSIX.
Reviewers: vitalybuka
Reviewed By: vitalybuka
Subscribers: #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D81577
AddressSanitizer-Unit :: ./Asan-i386-calls-Test/AddressSanitizer.LongJmpTest
AddressSanitizer-Unit :: ./Asan-i386-calls-Test/AddressSanitizer.SigLongJmpTest
AddressSanitizer-Unit :: ./Asan-i386-inline-Test/AddressSanitizer.LongJmpTest
AddressSanitizer-Unit :: ./Asan-i386-inline-Test/AddressSanitizer.SigLongJmpTest
These failures will be examined properly when time permits.
rdar://problem/62141412
Summary:
The previous code tries to strip out parentheses and anything in between
them. I'm guessing the idea here was to try to drop any listed arguments
for the function being symbolized. Unfortunately this approach is broken
in several ways.
* Templated functions may contain parentheses. The existing approach
messes up these names.
* In C++ argument types are part of a function's signature for the
purposes of overloading so removing them could be confusing.
Fix this simply by not trying to adjust the function name that comes
from `atos`.
A test case is included.
Without the change the test case produced output like:
```
WRITE of size 4 at 0x6060000001a0 thread T0
#0 0x10b96614d in IntWrapper<void >::operator=> const&) asan-symbolize-templated-cxx.cpp:10
#1 0x10b960b0e in void writeToA<IntWrapper<void > >>) asan-symbolize-templated-cxx.cpp:30
#2 0x10b96bf27 in decltype>)>> >)) std::__1::__invoke<void >), IntWrapper<void > >>), IntWrapper<void >&&) type_traits:4425
#3 0x10b96bdc1 in void std::__1::__invoke_void_return_wrapper<void>::__call<void >), IntWrapper<void > >>), IntWrapper<void >&&) __functional_base:348
#4 0x10b96bd71 in std::__1::__function::__alloc_func<void >), std::__1::allocator<void >)>, void >)>::operator>&&) functional:1533
#5 0x10b9684e2 in std::__1::__function::__func<void >), std::__1::allocator<void >)>, void >)>::operator>&&) functional:1707
#6 0x10b96cd7b in std::__1::__function::__value_func<void >)>::operator>&&) const functional:1860
#7 0x10b96cc17 in std::__1::function<void >)>::operator>) const functional:2419
#8 0x10b960ca6 in Foo<void >), IntWrapper<void > >::doCall>) asan-symbolize-templated-cxx.cpp:44
#9 0x10b96088b in main asan-symbolize-templated-cxx.cpp:54
#10 0x7fff6ffdfcc8 in start (in libdyld.dylib) + 0
```
Note how the symbol names for the frames are messed up (e.g. #8, #1).
With the patch the output looks like:
```
WRITE of size 4 at 0x6060000001a0 thread T0
#0 0x10005214d in IntWrapper<void (int)>::operator=(IntWrapper<void (int)> const&) asan-symbolize-templated-cxx.cpp:10
#1 0x10004cb0e in void writeToA<IntWrapper<void (int)> >(IntWrapper<void (int)>) asan-symbolize-templated-cxx.cpp:30
#2 0x100057f27 in decltype(std::__1::forward<void (*&)(IntWrapper<void (int)>)>(fp)(std::__1::forward<IntWrapper<void (int)> >(fp0))) std::__1::__invoke<void (*&)(IntWrapper<void (int)>), IntWrapper<void (int)> >(void (*&)(IntWrapper<void (int)>), IntWrapper<void (int)>&&) type_traits:4425
#3 0x100057dc1 in void std::__1::__invoke_void_return_wrapper<void>::__call<void (*&)(IntWrapper<void (int)>), IntWrapper<void (int)> >(void (*&)(IntWrapper<void (int)>), IntWrapper<void (int)>&&) __functional_base:348
#4 0x100057d71 in std::__1::__function::__alloc_func<void (*)(IntWrapper<void (int)>), std::__1::allocator<void (*)(IntWrapper<void (int)>)>, void (IntWrapper<void (int)>)>::operator()(IntWrapper<void (int)>&&) functional:1533
#5 0x1000544e2 in std::__1::__function::__func<void (*)(IntWrapper<void (int)>), std::__1::allocator<void (*)(IntWrapper<void (int)>)>, void (IntWrapper<void (int)>)>::operator()(IntWrapper<void (int)>&&) functional:1707
#6 0x100058d7b in std::__1::__function::__value_func<void (IntWrapper<void (int)>)>::operator()(IntWrapper<void (int)>&&) const functional:1860
#7 0x100058c17 in std::__1::function<void (IntWrapper<void (int)>)>::operator()(IntWrapper<void (int)>) const functional:2419
#8 0x10004cca6 in Foo<void (IntWrapper<void (int)>), IntWrapper<void (int)> >::doCall(IntWrapper<void (int)>) asan-symbolize-templated-cxx.cpp:44
#9 0x10004c88b in main asan-symbolize-templated-cxx.cpp:54
#10 0x7fff6ffdfcc8 in start (in libdyld.dylib) + 0
```
rdar://problem/58887175
Reviewers: kubamracek, yln
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D79597
Summary:
When ASan reports an issue the contents of the system log buffer
(`error_message_buffer`) get flushed to the system log (via
`LogFullErrorReport()`). After this happens the buffer is not cleared
but this is usually fine because the process usually exits soon after
reporting the issue.
However, when ASan runs in `halt_on_error=0` mode execution continues
without clearing the buffer. This leads to problems if more ASan
issues are found and reported.
1. Duplicate ASan reports in the system log. The Nth (start counting from 1)
ASan report will be duplicated (M - N) times in the system log if M is the
number of ASan issues reported.
2. Lost ASan reports. Given a sufficient
number of reports the buffer will fill up and consequently cannot be appended
to. This means reports can be lost.
The fix here is to reset `error_message_buffer_pos` to 0 which
effectively clears the system log buffer.
A test case is included but unfortunately it is Darwin specific because
querying the system log is an OS specific activity.
rdar://problem/55986279
Reviewers: kubamracek, yln, vitalybuka, kcc, filcab
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D76749
mlockall and munlockall were introduced in Android API 17, so avoid
referencing them on prior versions.
Differential Revision: https://reviews.llvm.org/D73515
Summary:
Sometimes an allocation stack trace is not very informative. Provide a
way to replace it with a stack trace of the user's choice.
Reviewers: pcc, kcc
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D69208
Summary:
The flag allows the user to specify a maximum allocation size that the
sanitizers will honor. Any larger allocations will return nullptr or
crash depending on allocator_may_return_null.
Reviewers: kcc, eugenis
Reviewed By: kcc, eugenis
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D69576
Updated: Removed offending TODO comment.
Dereferences with addresses above the 48-bit hardware addressable range
produce "invalid instruction" (instead of "invalid access") hardware
exceptions (there is no hardware address decoding logic for those bits),
and the address provided by this exception is the address of the
instruction (not the faulting address). The kernel maps the "invalid
instruction" to SEGV, but fails to provide the real fault address.
Because of this ASan lies and says that those cases are null
dereferences. This downgrades the severity of a found bug in terms of
security. In the ASan signal handler, we can not provide the real
faulting address, but at least we can try not to lie.
rdar://50366151
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D68676
> llvm-svn: 374265
llvm-svn: 374384
Dereferences with addresses above the 48-bit hardware addressable range
produce "invalid instruction" (instead of "invalid access") hardware
exceptions (there is no hardware address decoding logic for those bits),
and the address provided by this exception is the address of the
instruction (not the faulting address). The kernel maps the "invalid
instruction" to SEGV, but fails to provide the real fault address.
Because of this ASan lies and says that those cases are null
dereferences. This downgrades the severity of a found bug in terms of
security. In the ASan signal handler, we can not provide the real
faulting address, but at least we can try not to lie.
rdar://50366151
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D68676
llvm-svn: 374265
This fixes buildbot failures for https://reviews.llvm.org/rL372459.
(at least on PowerPC/Z )
The fix is generated by running clang-format on the error lines only.
llvm-svn: 372511
Summary:
strerror(3) on NetBSD uses internally TSD with a destructor that is never
fired for exit(3). It's correctly called for pthread_exit(3) scenarios.
This is a case when a leak on exit(3) is expected, unavoidable and harmless.
Reviewers: joerg, vitalybuka, dvyukov, mgorny
Reviewed By: vitalybuka
Subscribers: dmgreen, kristof.beyls, jfb, llvm-commits, #sanitizers
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D67337
llvm-svn: 372461
Summary:
The atexit(3) and __cxa_atexit() calls allocate internally memory and free on exit,
after executing all callback. This causes false positives as DoLeakCheck() is called
from the atexit handler. In the LSan/ASan tests there are strict checks triggering
false positives here.
Intercept all atexit(3) and __cxa_atexit() calls and disable LSan when calling the
real functions.
Stop tracing allocations in pthread_atfork(3) funtions, as there are performed
internal allocations that are not freed for the time of running StopTheWorld()
code. This avoids false-positives.
The same changes have to be replicated in the ASan and LSan runtime.
Non-NetBSD OSs are not tested and this code is restricted to NetBSD only.
Reviewers: dvyukov, joerg, mgorny, vitalybuka, eugenis
Reviewed By: vitalybuka
Subscribers: jfb, llvm-commits, #sanitizers
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D67331
llvm-svn: 372459
I D65322 I added a check for BrokenPipeError. However, python 2.7 doesn't
have BrokenPipeError. To be python 2.7 and 3 compatible we need to catch
IOError instead and check for errno == errno.EPIPE.
llvm-svn: 370025
- Unless explicit configuration, using FreeBSD super pages feature for shadow mapping.
- asan only for now.
Reviewers: dim, emaste, vitalybuka
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D65851
llvm-svn: 370008
Summary:
Currently, llvm-symbolizer will print -1 when presented with -1 and not
print a second line. In that case we will block for ever trying to read
the file name. This also happens for non-existent files, in which case GNU
addr2line exits immediate, but llvm-symbolizer does not (see
https://llvm.org/PR42754). While touching these lines, I also added some
more debug logging to help diagnose this and potential future issues.
Reviewers: kcc, eugenis, glider, samsonov
Reviewed By: eugenis
Subscribers: kubamracek, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D65322
llvm-svn: 369924
- Especially MemorySanitizer fails if those sysctl configs are enabled.
Reviewers: vitalybuka, emaste, dim
Reviewed By: dim
Differential Revision: https://reviews.llvm.org/D66582
llvm-svn: 369708
This created an infinite loop that timed out several build bots while
executing the test in compiler-rt/test/asan/TestCases/atexit_stats.cpp
Differential Revision: https://reviews.llvm.org/D60243
llvm-svn: 369472
This patch fixes https://github.com/google/sanitizers/issues/703
On a Graviton-A1 aarch64 machine with 48-bit VMA,
the time spent in LSan and ASan reduced from 2.5s to 0.01s when running
clang -fsanitize=leak compiler-rt/test/lsan/TestCases/sanity_check_pure_c.c && time ./a.out
clang -fsanitize=address compiler-rt/test/lsan/TestCases/sanity_check_pure_c.c && time ./a.out
With this patch, LSan and ASan create both the 32 and 64 allocators and select
at run time between the two allocators following a global variable that is
initialized at init time to whether the allocator64 can be used in the virtual
address space.
Differential Revision: https://reviews.llvm.org/D60243
llvm-svn: 369441
Summary:
This bug occurred when a plug-in requested that a binary not be
symbolized while the script is trying to symbolize a stack frame. In
this case `self.frame_no` would not be incremented. This would cause
subsequent stack frames that are symbolized to be incorrectly numbered.
To fix this `get_symbolized_lines()` has been modified to take an
argument that indicates whether the stack frame counter should
incremented. In `process_line_posix()` `get_symbolized_lines(None, ...)`
is now used in in the case where we don't want to symbolize a line so
that we can keep the frame counter increment in a single function.
A test case is included. The test uses a dummy plugin that always asks
`asan_symbolize.py` script to not symbolize the first binary that the
script asks about. Prior to the patch this would cause the output to
script to look something like
```
#0 0x0
#0 0x0 in do_access
#1 0x0 in main
```
This is the second attempt at landing this patch. The first (r368373)
failed due to failing some android bots and so was reverted in r368472.
The new test is now disabled for Android. It turns out that the patch
also fails for iOS too so it is also disabled for that family of
platforms too.
rdar://problem/49476995
Reviewers: kubamracek, yln, samsonov, dvyukov, vitalybuka
Subscribers: #sanitizers, llvm-commits
Tags: #llvm, #sanitizers
Differential Revision: https://reviews.llvm.org/D65495
llvm-svn: 368603
Summary:
This bug occurred when a plug-in requested that a binary not be
symbolized while the script is trying to symbolize a stack frame. In
this case `self.frame_no` would not be incremented. This would cause
subsequent stack frames that are symbolized to be incorrectly numbered.
To fix this `get_symbolized_lines()` has been modified to take an
argument that indicates whether the stack frame counter should
incremented. In `process_line_posix()` `get_symbolized_lines(None, ...)`
is now used in in the case where we don't want to symbolize a line so
that we can keep the frame counter increment in a single function.
A test case is included. The test uses a dummy plugin that always asks
`asan_symbolize.py` script to not symbolize the first binary that the
script asks about. Prior to the patch this would cause the output to
script to look something like
```
#0 0x0
#0 0x0 in do_access
#1 0x0 in main
```
rdar://problem/49476995
Reviewers: kubamracek, yln, samsonov, dvyukov, vitalybuka
Subscribers: #sanitizers, llvm-commits
Tags: #llvm, #sanitizers
Differential Revision: https://reviews.llvm.org/D65495
llvm-svn: 368373
The fallback to the alternative implementation of TSD with TLS
is only needed for the static version of ASan for NetBSD.
The same code cannot be reused for the dynamic version of ASan as
TLS breaks and TSD code works.
llvm-svn: 368219
Summary:
MSAN was broken on FreeBSD by https://reviews.llvm.org/D55703: after this
change accesses to the key variable call __tls_get_addr, which is
intercepted. The interceptor then calls GetCurrentThread which calls
MsanTSDGet which again calls __tls_get_addr, etc...
Using the default implementation in the SANITIZER_FREEBSD case fixes MSAN
for me.
I then applied the same change to ASAN (introduced in https://reviews.llvm.org/D55596)
but that did not work yet. In the ASAN case, we get infinite recursion
again during initialization, this time because calling pthread_key_create() early on
results in infinite recursion. pthread_key_create() calls sysctlbyname()
which is intercepted but COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED returns
true, so the interceptor calls internal_sysctlbyname() which then ends up
calling the interceptor again. I fixed this issue by using dlsym() to get
the libc version of sysctlbyname() instead.
This fixes https://llvm.org/PR40761
Reviewers: vitalybuka, krytarowski, devnexen, dim, bsdjhb, #sanitizers, MaskRay
Reviewed By: MaskRay
Subscribers: MaskRay, emaste, kubamracek, jfb, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D65221
llvm-svn: 367442
This option disables the validation of binary UUIDs. This is useful
in environments where the `otool` binary is not available.
rdar://problem/49476995
llvm-svn: 367379
RTL interception broke mingw32, this should fix those builds by
removing dependency on windows.h
reviewed in https://reviews.llvm.org/D64694
llvm-svn: 366105
This patch enables compiler-rt on SPARC targets. Most of the changes are straightforward:
- Add 32 and 64-bit sparc to compiler-rt
- lib/builtins/fp_lib.h needed to check if the int128_t and uint128_t types exist (which they don't on sparc)
There's one issue of note: many asan tests fail to compile on Solaris/SPARC:
fatal error: error in backend: Function "_ZN7testing8internal16BoolFromGTestEnvEPKcb": over-aligned dynamic alloca not supported.
Therefore, while asan is still built, both asan and ubsan-with-asan testing is disabled. The
goal is to check if asan keeps compiling on Solaris/SPARC. This serves asan in gcc,
which doesn't have the problem above and works just fine.
With this patch, sparcv9-sun-solaris2.11 test results are pretty good:
Failing Tests (9):
Builtins-sparc-sunos :: divtc3_test.c
Builtins-sparcv9-sunos :: compiler_rt_logbl_test.c
Builtins-sparcv9-sunos :: divtc3_test.c
[...]
UBSan-Standalone-sparc :: TestCases/TypeCheck/misaligned.cpp
UBSan-Standalone-sparcv9 :: TestCases/TypeCheck/misaligned.cpp
The builtin failures are due to Bugs 42493 and 42496. The tree contained a few additonal
patches either currently in review or about to be submitted.
Tested on sparcv9-sun-solaris2.11.
Differential Revision: https://reviews.llvm.org/D40943
llvm-svn: 365880
- Adds interceptors for Rtl[Allocate|Free|Size|ReAllocate]Heap
- Adds unit tests for the new interceptors and expands HeapAlloc
tests to demonstrate new functionality.
Reviewed as D62927
- adds fixes for ~win and x64 tests
> llvm-svn: 365381
llvm-svn: 365424
- Adds interceptors for Rtl[Allocate|Free|Size|ReAllocate]Heap
- Adds unit tests for the new interceptors and expands HeapAlloc
tests to demonstrate new functionality.
Reviewed as D62927
llvm-svn: 365422
- Adds interceptors for Rtl[Allocate|Free|Size|ReAllocate]Heap
- Adds unit tests for the new interceptors and expands HeapAlloc
tests to demonstrate new functionality.
Reviewed as D62927
llvm-svn: 365381
The VM layout on iOS is not stable between releases. On 64-bit iOS and
its derivatives we use a dynamic shadow offset that enables ASan to
search for a valid location for the shadow heap on process launch rather
than hardcode it.
This commit extends that approach for 32-bit iOS plus derivatives and
their simulators.
rdar://50645192
rdar://51200372
rdar://51767702
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D63586
llvm-svn: 364105
Otherwise the tests hang on Windows attempting to report nested errors.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D63627
llvm-svn: 364070
Summary:
The use case here is to be able symbolicate ASan reports that might be
partially symbolicated, in particular where the function name is known but no source
location is available. This can be caused by missing debug info. Previously we
would only try to symbolicate completely unsymbolicated reports.
The code currently contains an unfortunate quirk to handle a darwin
specific bug (rdar://problem/49784442) in the way partially symbolicated
reports are emitted when the source location is missing.
rdar://problem/49476995
Reviewers: kubamracek, yln, samsonov, dvyukov, vitalybuka
Subscribers: aprantl, #sanitizers, llvm-commits
Tags: #llvm, #sanitizers
Differential Revision: https://reviews.llvm.org/D60533
llvm-svn: 363639
- Several "warning: extra ';' [-Wpedantic]"
- One "C++ style comments are not allowed in ISO C90 [enabled by default]"
in a file that uses C style comments everywhere but in one place
llvm-svn: 360430
On Linux both version of the INTERCEPT_FUNCTION macro now return true
when interception was successful. Adapt and cleanup some usages.
Also note that `&(func) == &WRAP(func)` is a link-time property, but we
do a runtime check.
Tested on Linux and macOS.
Previous attempt reverted by: 5642c3feb0
This attempt to bring order to the interceptor macro goes the other
direction and aligns the Linux implementation with the way things are
done on Windows.
Reviewed By: vitalybuka, rnk
Differential Revision: https://reviews.llvm.org/D61358
llvm-svn: 359725
They need to have same AddressSpaceView and MapUnmapCallback.
Reviewers: eugenis
Subscribers: kubamracek, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D61168
llvm-svn: 359719
Changing INTERCEPT_FUNCTION to return void is not functionally correct.
IMO the best way to communicate failure or success of interception is
with a return value, not some external address comparison.
This change was also creating link errors for _except_handler4_common,
which is exported from ucrtbase.dll in 32-bit Windows.
Also revert dependent changes r359362 and r359466.
llvm-svn: 359611
We have windows.h in asan_win.cc, so we can just use the correct
prototypes for these EH-related interceptors without worrying.
Also fix an unused variable warning while I'm here.
llvm-svn: 359500
HeapReAlloc should allow for 0 sized reallocations without freeing the memory block provided by the user.
_recalloc previously did not zero new memory after reallocation.
https://reviews.llvm.org/D61268
llvm-svn: 359498
Note that this change is not strictly NFC since we add the
`(&(name) != &WRAP(name)` part to the conditional for the `_VER` variant
of the macro.
Reviewers: vitalybuka
Differential Revision: https://reviews.llvm.org/D61204
llvm-svn: 359466
This temporary change tells us about all the places where the return
value of the INTERCEPT_FUNCTION macro is actually used. In the next
patch I will cleanup the macro and remove GetRealFuncAddress.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D61145
llvm-svn: 359325
Summary:
The use case here is to be able get the UUIDs of the modules that need
to be symbolicated so that external plugins can see them. This
information can be extracted from ASan reports if the `print_module_map`
ASan option is enabled. Currently printing of the module map is only
implemented on Darwin and so this is effectively a Darwin only feature
right now.
The module map hooks into symbolization using the new plugin
infrastructure. A new hook in `AsanSymbolizerPlugInProxy` (and in
`AsanSymbolizerPlugIn`) is also provided to allow external plugins to hook
into the module look up process. This will allow external plugins to
look up modules with knowledge of their UUID.
The new plug-in is currently stored in the `asan_symbolize.py` script.
We could potentially move this into a separate file in the future (to
reduce clutter) if we can come up with a policy for where to search for
plugins that should always get loaded.
rdar://problem/49476995
Reviewers: kubamracek, yln, samsonov, dvyukov, vitalybuka
Subscribers: #sanitizers, llvm-commits
Tags: #llvm, #sanitizers
Differential Revision: https://reviews.llvm.org/D60531
llvm-svn: 359322