Commit Graph

47 Commits

Author SHA1 Message Date
Victor Huang a4bb71b1c0 Disable hoisting MI to hotter basic blocks when using pgo
This is a follow up patch for https://reviews.llvm.org/D63676 to
enable the feature when using pgo.

Differential Revision: https://reviews.llvm.org/D85240
2020-09-17 14:17:00 -05:00
Kristof Beyls c35ed40f4f [AArch64] Extend AArch64SLSHardeningPass to harden BLR instructions.
To make sure that no barrier gets placed on the architectural execution
path, each
  BLR x<N>
instruction gets transformed to a
  BL __llvm_slsblr_thunk_x<N>
instruction, with __llvm_slsblr_thunk_x<N> a thunk that contains
__llvm_slsblr_thunk_x<N>:
  BR x<N>
  <speculation barrier>

Therefore, the BLR instruction gets split into 2; one BL and one BR.
This transformation results in not inserting a speculation barrier on
the architectural execution path.

The mitigation is off by default and can be enabled by the
harden-sls-blr subtarget feature.

As a linker is allowed to clobber X16 and X17 on function calls, the
above code transformation would not be correct in case a linker does so
when N=16 or N=17. Therefore, when the mitigation is enabled, generation
of BLR x16 or BLR x17 is avoided.

As BLRA* indirect calls are not produced by LLVM currently, this does
not aim to implement support for those.

Differential Revision:  https://reviews.llvm.org/D81402
2020-06-12 07:34:33 +01:00
Kristof Beyls 0ee176edc8 [AArch64] Introduce AArch64SLSHardeningPass, implementing hardening of RET and BR instructions.
Some processors may speculatively execute the instructions immediately
following RET (returns) and BR (indirect jumps), even though
control flow should change unconditionally at these instructions.
To avoid a potential miss-speculatively executed gadget after these
instructions leaking secrets through side channels, this pass places a
speculation barrier immediately after every RET and BR instruction.

Since these barriers are never on the correct, architectural execution
path, performance overhead of this is expected to be low.

On targets that implement that Armv8.0-SB Speculation Barrier extension,
a single SB instruction is emitted that acts as a speculation barrier.
On other targets, a DSB SYS followed by a ISB is emitted to act as a
speculation barrier.

These speculation barriers are implemented as pseudo instructions to
avoid later passes to analyze them and potentially remove them.

Even though currently LLVM does not produce BRAA/BRAB/BRAAZ/BRABZ
instructions, these are also mitigated by the pass and tested through a
MIR test.

The mitigation is off by default and can be enabled by the
harden-sls-retbr subtarget feature.

Differential Revision:  https://reviews.llvm.org/D81400
2020-06-11 07:51:17 +01:00
Vitaly Buka f48bc44ace [MTE] Move tagging in pipeline
Summary:
This removes two analyses from pipeline.

Depends on D80771.

Reviewers: eugenis

Reviewed By: eugenis

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D80780
2020-06-02 17:48:55 -07:00
Vitaly Buka 232d348c6e [MTE] Convert StackSafety into analysis
This lets us to remove !stack-safe metadata and
better controll when to perform StackSafety
analysis.

Reviewers: eugenis

Subscribers: hiraditya, steven_wu, dexonsmith, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D80771
2020-06-02 16:08:14 -07:00
Juneyoung Lee 54b6457240 [TargetPassConfig] Add CanonicalizeFreezeInLoops before LSR
Summary:
This patch adds CanonicalizeFreezeInLoops before LSR.
Relevant patch: https://reviews.llvm.org/D77523

Reviewers: spatel, efriedma, jdoerfert, fhahn, nikic, reames, xbolva00

Reviewed By: nikic

Subscribers: xbolva00, nikic, lebedev.ri, hiraditya, llvm-commits, sanwou01, nlopes

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D77524
2020-05-28 05:21:12 +09:00
Nikita Popov 0c6bba71e3 [TargetPassConfig] Don't add alias analysis at optnone
When performing codegen at optnone, don't add alias analysis to
the pipeline. We don't need it, but it causes an unnecessary
dominator tree calculation.

I've also moved the module verifier call to the top so that a bunch
of disabled-at-optnone passes group more nicely.

Differential Revision: https://reviews.llvm.org/D80378
2020-05-23 10:35:03 +02:00
Evgeniy Brevnov 3e68a66704 [BPI][NFC] Reuse post dominantor tree from analysis manager when available
Summary: Currenlty BPI unconditionally creates post dominator tree each time. While this is not incorrect we can save compile time by reusing existing post dominator tree (when it's valid) provided by analysis manager.

Reviewers: skatkov, taewookoh, yrouban

Reviewed By: skatkov

Subscribers: hiraditya, steven_wu, dexonsmith, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D78987
2020-04-30 11:31:03 +07:00
Kerry McLaughlin 36c76de678 [AArch64][SVE] Add a pass for SVE intrinsic optimisations
Summary:
Creates the SVEIntrinsicOpts pass. In this patch, the pass tries
to remove unnecessary reinterpret intrinsics which convert to
and from svbool_t (llvm.aarch64.sve.convert.[to|from].svbool)

For example, the reinterprets below are redundant:

  %1 = call <vscale x 16 x i1> @llvm.aarch64.sve.convert.to.svbool.nxv4i1(<vscale x 4 x i1> %a)
  %2 = call <vscale x 4 x i1> @llvm.aarch64.sve.convert.from.svbool.nxv4i1(<vscale x 16 x i1> %1)

The pass also looks for ptest intrinsics and phi instructions where
the operands are being needlessly converted to and from svbool_t.

Reviewers: sdesmalen, andwar, efriedma, cameron.mcinally, c-rhodes, rengolin

Reviewed By: efriedma

Subscribers: mgorny, tschuett, kristof.beyls, hiraditya, rkruppe, psnobl, danielkiss, cfe-commits, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D76078
2020-04-14 10:41:49 +01:00
Daniel Sanders f71350f05a Add -debugify-and-strip-all to add debug info before a pass and remove it after
Summary:
This allows us to test each backend pass under the presence
of debug info using pre-existing tests. The tests should not
fail as a result of this so long as it's true that debug info
does not affect CodeGen.

In practice, a few tests are sensitive to this:
* Tests that check the pass structure (e.g. O0-pipeline.ll)
* Tests that check --debug output. Specifically instruction
  dumps containing MMO's (e.g. prelegalizercombiner-extends.ll)
* Tests that contain debugify metadata as mir-strip-debug will
  remove it (e.g. fastisel-debugvalue-undef.ll)
* Tests with partial debug info (e.g.
  patchable-function-entry-empty.mir had debug info but no
  !llvm.dbg.cu)
* Tests that check optimization remarks overly strictly (e.g.
  prologue-epilogue-remarks.mir)
* Tests that would inject the pass in an unsafe region (e.g.
  seqpairspill.mir would inject between register alloc and
  virt reg rewriter)
In all cases, the checks can either be updated or
--debugify-and-strip-all-safe=0 can be used to avoid being
affected by something like llvm-lit -Dllc='llc --debugify-and-strip-all-safe'

I tested this without the lost debug locations verifier to
confirm that AArch64 behaviour is unaffected (with the fixes
in this patch) and with it to confirm it finds the problems
without the additional RUN lines we had before.

Depends on D77886, D77887, D77747

Reviewers: aprantl, vsk, bogner

Subscribers: qcolombet, kristof.beyls, hiraditya, danielkiss, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D77888
2020-04-10 16:36:07 -07:00
Serguei Katkov 4275eb1331 Re-land [Codegen/Statepoint] Allow usage of registers for non gc deopt values.
The change introduces the usage of physical registers for non-gc deopt values.
This require runtime support to know how to take a value from register.
By default usage is off and can be switched on by option.

The change also introduces additional fix-up patch which forces the spilling
of caller saved registers (clobbered after the call) and re-writes statepoint
to use spill slots instead of caller saved registers.

Reviewers: reames, danstrushin
Reviewed By: dantrushin
Subscribers: mgorny, hiraditya, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D77797
2020-04-10 10:13:39 +07:00
Cameron McInally a5b22b768f [AArch64][SVE] Add support for DestructiveBinary and DestructiveBinaryComm DestructiveInstTypes
Add support for DestructiveBinaryComm DestructiveInstType, as well as the lowering code to expand the new Pseudos into the final movprfx+instruction pairs.

Differential Revision: https://reviews.llvm.org/D73711
2020-02-21 15:19:54 -06:00
Fangrui Song 9a24488cb6 [CodeGen] Move fentry-insert, xray-instrumentation and patchable-function before addPreEmitPass()
This intention is to move patchable-function before aarch64-branch-targets
(configured in AArch64PassConfig::addPreEmitPass) so that we emit BTI before NOPs
(see https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92424).

This also allows addPreEmitPass() passes to know the precise instruction sizes if they want.

Tried x86-64 Debug/Release builds of ccls with -fxray-instrument -fxray-instruction-threshold=1.
No output difference with this commit and the previous commit.
2020-01-19 00:09:46 -08:00
Hiroshi Yamauchi d9ae493937 [PGO][PGSO] Instrument the code gen / target passes.
Summary:
Split off of D67120.

Add the profile guided size optimization instrumentation / queries in the code
gen or target passes. This doesn't enable the size optimizations in those passes
yet as they are currently disabled in shouldOptimizeForSize (for non-IR pass
queries).

A second try after reverted D71072.

Reviewers: davidxl

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D71149
2019-12-09 12:42:59 -08:00
Hiroshi Yamauchi 2eb30fafa5 Revert "[PGO][PGSO] Instrument the code gen / target passes."
This reverts commit 9a0b5e1407.

This seems to break buildbots.
2019-12-06 12:17:32 -08:00
Hiroshi Yamauchi 9a0b5e1407 [PGO][PGSO] Instrument the code gen / target passes.
Summary:
Split off of D67120.

Add the profile guided size optimization instrumentation / queries in the code
gen or target passes. This doesn't enable the size optimizations in those passes
yet as they are currently disabled in shouldOptimizeForSize (for non-IR pass
queries).

Reviewers: davidxl

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D71072
2019-12-06 10:43:39 -08:00
Momchil Velikov d91ea7fc6f [AArch64] Move the branch relaxation pass after BTI insertion
Summary:
Inserting BTI instructions can push branch destinations out of range.

The branch relaxation pass itself cannot insert indirect branches since `TargetInstrInfo::insertIndirecrtBranch` is not implemented for AArch64 (guess +/-128 MB direct branch range is more than enough in practice).

Testing this is a bit tricky.

The original test case we have is 155kloc/6.1M. I've generated a test case using this program:
```

int main() {
  std::cout << R"src(int test();
void g0(), g1(), g2(), g3(), g4(), e();

void f(int v) {
  if ((test() & 2) == 0) {
  switch (v) {
  case 0:
    g0();
  case 1:
    g1();
  case 2:
    g2();
  case 3:
    g3();
  }
)src";

  const int N = 8176;

  for (int i = 0; i < N; ++i)
    std::cout << "    void h" << i << "();\n";
  for (int i = 0; i < N; ++i)
    std::cout << "    h" << i << "();\n";

  std::cout << R"src(
  } else {
    e();
  }
}
)src";
}
```
which is still a bit too much to commit as a regression test, IMHO.

Reviewers: t.p.northover, ostannard

Reviewed By: ostannard

Subscribers: kristof.beyls, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69118

Change-Id: Ide5c922bcde08ff4cf635da5e52365525a997a0a
2019-11-06 12:46:50 +00:00
evgeny 87eac7ef6a [LegacyPM] Fix pass structure dumping
If module pass uses on-demand function analyses then structure is being
displayed incorrectly because FunctionPassManagerImpl can't dump contained
FPPassManager instances.

Differential revision: https://reviews.llvm.org/D69315
2019-11-01 14:43:51 +03:00
Joerg Sonnenberger 9681ea9560 Reapply r374743 with a fix for the ocaml binding
Add a pass to lower is.constant and objectsize intrinsics

This pass lowers is.constant and objectsize intrinsics not simplified by
earlier constant folding, i.e. if the object given is not constant or if
not using the optimized pass chain. The result is recursively simplified
and constant conditionals are pruned, so that dead blocks are removed
even for -O0. This allows inline asm blocks with operand constraints to
work all the time.

The new pass replaces the existing lowering in the codegen-prepare pass
and fallbacks in SDAG/GlobalISEL and FastISel. The latter now assert
on the intrinsics.

Differential Revision: https://reviews.llvm.org/D65280

llvm-svn: 374784
2019-10-14 16:15:14 +00:00
Dmitri Gribenko 1a21f98ac3 Revert "Add a pass to lower is.constant and objectsize intrinsics"
This reverts commit r374743. It broke the build with Ocaml enabled:
http://lab.llvm.org:8011/builders/clang-x86_64-debian-fast/builds/19218

llvm-svn: 374768
2019-10-14 12:22:48 +00:00
Joerg Sonnenberger e4300c392d Add a pass to lower is.constant and objectsize intrinsics
This pass lowers is.constant and objectsize intrinsics not simplified by
earlier constant folding, i.e. if the object given is not constant or if
not using the optimized pass chain. The result is recursively simplified
and constant conditionals are pruned, so that dead blocks are removed
even for -O0. This allows inline asm blocks with operand constraints to
work all the time.

The new pass replaces the existing lowering in the codegen-prepare pass
and fallbacks in SDAG/GlobalISEL and FastISel. The latter now assert
on the intrinsics.

Differential Revision: https://reviews.llvm.org/D65280

llvm-svn: 374743
2019-10-13 23:00:15 +00:00
Jakub Kuderski 856c1cd852 [Dominators][CodeGen] Don't mark MachineDominatorTree as preserved in MachineLICM
llvm-svn: 373378
2019-10-01 18:27:44 +00:00
Jakub Kuderski 56b52a207f [Dominators][CodeGen] Add MachinePostDominatorTree verification
Summary:
This patch implements Machine PostDominator Tree verification and ensures that the verification doesn't fail the in-tree tests.

MPDT verification can be enabled using `verify-machine-dom-info` -- the same flag used by Machine Dominator Tree verification.

Flipping the flag revealed that MachineSink falsely claimed to preserve CFG and MDT/MPDT. This patch fixes that.

Reviewers: arsenm, hliao, rampitec, vpykhtin, grosser

Reviewed By: hliao

Subscribers: wdng, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68235

llvm-svn: 373341
2019-10-01 15:23:27 +00:00
Dmitri Gribenko 2bf8d77453 Revert "Reland "r364412 [ExpandMemCmp][MergeICmps] Move passes out of CodeGen into opt pipeline.""
This reverts commit r371502, it broke tests
(clang/test/CodeGenCXX/auto-var-init.cpp).

llvm-svn: 371507
2019-09-10 10:39:09 +00:00
Clement Courbet 612c260ec3 Reland "r364412 [ExpandMemCmp][MergeICmps] Move passes out of CodeGen into opt pipeline."
With a fix for sanitizer breakage (see explanation in D60318).

llvm-svn: 371502
2019-09-10 09:18:00 +00:00
Evgeniy Stepanov 04647f5e22 MemTag: unchecked load/store optimization.
Summary:
MTE allows memory access to bypass tag check iff the address argument
is [SP, #imm]. This change takes advantage of this to demote uses of
tagged addresses to regular FrameIndex operands, reducing register
pressure in large functions.

MO_TAGGED target flag is used to signal that the FrameIndex operand
refers to memory that might be tagged, and needs to be handled with
care. Such operand must be lowered to [SP, #imm] directly, without a
scratch register.

The transformation pass attempts to predict when the offset will be
out of range and disable the optimization.
AArch64RegisterInfo::eliminateFrameIndex has an escape hatch in case
this prediction has been wrong, but it is quite inefficient and should
be avoided.

Reviewers: pcc, vitalybuka, ostannard

Subscribers: mgorny, javed.absar, kristof.beyls, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66457

llvm-svn: 370490
2019-08-30 17:23:02 +00:00
Evgeniy Stepanov 50affbe47f MemTag: stack initializer merging.
Summary:
MTE provides instructions to update memory tags and data at the same
time. This change makes use of those to generate more compact code for
stack variable tagging + initialization.

We collect memory store and memset instructions following an alloca or a
lifetime.start call, and replace them with the corresponding MTE
intrinsics. Since the intrinsics work on 16-byte aligned chunks, the
stored values are combined as necessary.

Reviewers: pcc, vitalybuka, ostannard

Subscribers: srhines, javed.absar, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66167

llvm-svn: 369297
2019-08-19 20:47:09 +00:00
Kai Luo dec624682e [MachineCSE][MachinePRE] Avoid hoisting code from code regions into hot BBs.
Summary:
Current PRE hoists common computations into
CMBB = DT->findNearestCommonDominator(MBB, MBB1).
However, if CMBB is in a hot loop body, we might get performance
degradation.

Differential Revision: https://reviews.llvm.org/D64394

llvm-svn: 366570
2019-07-19 12:58:16 +00:00
Evgeniy Stepanov 851339fb29 Basic MTE stack tagging instrumentation.
Summary:
Use MTE intrinsics to tag stack variables in functions with
sanitize_memtag attribute.

Reviewers: pcc, vitalybuka, hctim, ostannard

Subscribers: srhines, mgorny, javed.absar, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D64173

llvm-svn: 366361
2019-07-17 19:24:12 +00:00
Clement Courbet 2851248fa1 Revert "r364412 [ExpandMemCmp][MergeICmps] Move passes out of CodeGen into opt pipeline."
Breaks sanitizers:
    libFuzzer :: cxxstring.test
    libFuzzer :: memcmp.test
    libFuzzer :: recommended-dictionary.test
    libFuzzer :: strcmp.test
    libFuzzer :: value-profile-mem.test
    libFuzzer :: value-profile-strcmp.test

llvm-svn: 364416
2019-06-26 12:13:13 +00:00
Clement Courbet 7b3a5f0e6d [ExpandMemCmp][MergeICmps] Move passes out of CodeGen into opt pipeline.
This allows later passes (in particular InstCombine) to optimize more
cases.

One that's important to us is `memcmp(p, q, constant) < 0` and memcmp(p, q, constant) > 0.

llvm-svn: 364412
2019-06-26 11:50:18 +00:00
Matt Arsenault 9cac4e6d14 Rename ExpandISelPseudo->FinalizeISel, delay register reservation
This allows targets to make more decisions about reserved registers
after isel. For example, now it should be certain there are calls or
stack objects in the frame or not, which could have been introduced by
legalization.

Patch by Matthias Braun

llvm-svn: 363757
2019-06-19 00:25:39 +00:00
Kristof Beyls e66bc1f756 Introduce control flow speculation tracking pass for AArch64
The pass implements tracking of control flow miss-speculation into a "taint"
register. That taint register can then be used to mask off registers with
sensitive data when executing under miss-speculation, a.k.a. "transient
execution".
This pass is aimed at mitigating against SpectreV1-style vulnarabilities.

At the moment, it implements the tracking of miss-speculation of control
flow into a taint register, but doesn't implement a mechanism yet to then
use that taint register to mask off vulnerable data in registers (something
for a follow-on improvement). Possible strategies to mask out vulnerable
data that can be implemented on top of this are:
- speculative load hardening to automatically mask of data loaded
  in registers.
- using intrinsics to mask of data in registers as indicated by the
  programmer (see https://lwn.net/Articles/759423/).

For AArch64, the following implementation choices are made.
Some of these are different than the implementation choices made in
the similar pass implemented in X86SpeculativeLoadHardening.cpp, as
the instruction set characteristics result in different trade-offs.
- The speculation hardening is done after register allocation. With a
  relative abundance of registers, one register is reserved (X16) to be
  the taint register. X16 is expected to not clash with other register
  reservation mechanisms with very high probability because:
  . The AArch64 ABI doesn't guarantee X16 to be retained across any call.
  . The only way to request X16 to be used as a programmer is through
    inline assembly. In the rare case a function explicitly demands to
    use X16/W16, this pass falls back to hardening against speculation
    by inserting a DSB SYS/ISB barrier pair which will prevent control
    flow speculation.
- It is easy to insert mask operations at this late stage as we have
  mask operations available that don't set flags.
- The taint variable contains all-ones when no miss-speculation is detected,
  and contains all-zeros when miss-speculation is detected. Therefore, when
  masking, an AND instruction (which only changes the register to be masked,
  no other side effects) can easily be inserted anywhere that's needed.
- The tracking of miss-speculation is done by using a data-flow conditional
  select instruction (CSEL) to evaluate the flags that were also used to
  make conditional branch direction decisions. Speculation of the CSEL
  instruction can be limited with a CSDB instruction - so the combination of
  CSEL + a later CSDB gives the guarantee that the flags as used in the CSEL
  aren't speculated. When conditional branch direction gets miss-speculated,
  the semantics of the inserted CSEL instruction is such that the taint
  register will contain all zero bits.
  One key requirement for this to work is that the conditional branch is
  followed by an execution of the CSEL instruction, where the CSEL
  instruction needs to use the same flags status as the conditional branch.
  This means that the conditional branches must not be implemented as one
  of the AArch64 conditional branches that do not use the flags as input
  (CB(N)Z and TB(N)Z). This is implemented by ensuring in the instruction
  selectors to not produce these instructions when speculation hardening
  is enabled. This pass will assert if it does encounter such an instruction.
- On function call boundaries, the miss-speculation state is transferred from
  the taint register X16 to be encoded in the SP register as value 0.

Future extensions/improvements could be:
- Implement this functionality using full speculation barriers, akin to the
  x86-slh-lfence option. This may be more useful for the intrinsics-based
  approach than for the SLH approach to masking.
  Note that this pass already inserts the full speculation barriers if the
  function for some niche reason makes use of X16/W16.
- no indirect branch misprediction gets protected/instrumented; but this
  could be done for some indirect branches, such as switch jump tables.

Differential Revision: https://reviews.llvm.org/D54896

llvm-svn: 349456
2018-12-18 08:50:02 +00:00
Alexandros Lamprineas 490ae11717 [AArch64] Re-run load/store optimizer after aggressive tail duplication
The Load/Store Optimizer runs before Machine Block Placement. At O3 the
Tail Duplication Threshold is set to 4 instructions and this can create
new opportunities for the Load/Store Optimizer. It seems worthwhile to
run it once again.

llvm-svn: 349338
2018-12-17 10:45:43 +00:00
Martin Elshuber fef3036d37 Subject: [PATCH] [CodeGen] Add pass to combine interleaved loads.
This patch defines an interleaved-load-combine pass. The pass searches
for ShuffleVector instructions that represent interleaved loads. Matches are
converted such that they will be captured by the InterleavedAccessPass.

The pass extends LLVMs capabilities to use target specific instruction
selection of interleaved load patterns (e.g.: ld4 on Aarch64
architectures).

Differential Revision: https://reviews.llvm.org/D52653

llvm-svn: 347208
2018-11-19 14:26:10 +00:00
Tim Northover 1c353419ab AArch64: add a pass to compress jump-table entries when possible.
llvm-svn: 345188
2018-10-24 20:19:09 +00:00
Oliver Stannard 250e5a5b65 [AArch64][v8.5A] Branch Target Identification code-generation pass
The Branch Target Identification extension, introduced to AArch64 in
Armv8.5-A, adds the BTI instruction, which is used to mark valid targets
of indirect branches. When enabled, the processor will trap if an
instruction in a protected page tries to perform an indirect branch to
any instruction other than a BTI. The BTI instruction uses encodings
which were NOPs in earlier versions of the architecture, so BTI-enabled
code will still run on earlier hardware, just without the extra
protection.

There are 3 variants of the BTI instruction, which are valid targets for
different kinds or branches:
- BTI C can be targeted by call instructions, and is inteneded to be
  used at function entry points. These are the BLR instruction, as well
  as BR with x16 or x17. These BR instructions are allowed for use in
  PLT entries, and we can also use them to allow indirect tail-calls.
- BTI J can be targeted by BR only, and is intended to be used by jump
  tables.
- BTI JC acts ab both a BTI C and a BTI J instruction, and can be
  targeted by any BLR or BR instruction.

Note that RET instructions are not restricted by branch target
identification, the reason for this is that return addresses can be
protected more effectively using return address signing. Direct branches
and calls are also unaffected, as it is assumed that an attacker cannot
modify executable pages (if they could, they wouldn't need to do a
ROP/JOP attack).

This patch adds a MachineFunctionPass which:
- Adds a BTI C at the start of every function which could be indirectly
  called (either because it is address-taken, or externally visible so
  could be address-taken in another translation unit).
- Adds a BTI J at the start of every basic block which could be
  indirectly branched to. This could be either done by a jump table, or
  by taking the address of the block (e.g. the using GCC label values
  extension).

We only need to use BTI JC when a function is indirectly-callable, and
takes the address of the entry block. I've not been able to trigger this
from C or IR, but I've included a MIR test just in case.

Using BTI C at function entries relies on the fact that no other code in
BTI-protected pages uses indirect tail-calls, unless they use x16 or x17
to hold the address. I'll add that code-generation restriction as a
separate patch.

Differential revision: https://reviews.llvm.org/D52867

llvm-svn: 343967
2018-10-08 14:04:24 +00:00
Christy Lee e94374809e Re-submitting changes in D51550 because it failed to patch.
Reviewers: javed.absar, trentxintong, courbet

Reviewed By: trentxintong

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D52433

llvm-svn: 342919
2018-09-24 20:47:12 +00:00
Jessica Paquette f90edbe3d6 Recommit "Enable MachineOutliner by default under -Oz for AArch64"
Fixed the ASAN failure from before in r338148, so recommiting.

This patch enables the MachineOutliner by default in AArch64 under -Oz.

The MachineOutliner offers around a 4.5% improvement on the current -Oz code
size improvements.

We have done work into improving the debuggability of outlined code, so that
users of -Oz won't be surprised by the optimization. We have also been executing
the LLVM test suite and common external tests such as the SPEC suites
continuously with no issue. The outliner has a low compile-time overhead of
roughly 1%. At this point, the outliner would be a really good addition to the
-Oz pass pipeline!

llvm-svn: 338160
2018-07-27 20:18:27 +00:00
Jessica Paquette faea2d3130 Revert "Enable MachineOutliner by default under -Oz for AArch64"
It failed an Asan test on a bot:

http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-fast/builds/21543/steps/check-llvm%20asan/logs/stdio

Fixing that before recommitting.

llvm-svn: 338136
2018-07-27 17:25:38 +00:00
Jessica Paquette d4229b985c Enable MachineOutliner by default under -Oz for AArch64
This patch enables the MachineOutliner by default in AArch64 under -Oz.

The MachineOutliner offers around a 4.5% improvement on the current -Oz code
size improvements.

We have done work into improving the debuggability of outlined code, so that
users of -Oz won't be surprised by the optimization. We have also been executing
the LLVM test suite and common external tests such as the SPEC suites
continuously with no issue. The outliner has a low compile-time overhead of
roughly 1%. At this point, the outliner would be a really good addition to the
-Oz pass pipeline!

llvm-svn: 338133
2018-07-27 16:44:42 +00:00
Francis Visoiu Mistrih ca69b3bf6d [ShrinkWrap] Add optimization remarks to the shrink-wrapping pass
Start by emitting remarks for very basic unsupported cases such as
irreducible CFGs and EHFunclets. The end goal is to be able to cover all
the cases where we give up with an explanation.

llvm-svn: 333972
2018-06-05 00:27:24 +00:00
Michael Zolotukhin 8d052a0dd2 Remove MachineLoopInfo dependency from AsmPrinter.
Summary:
Currently MachineLoopInfo is used in only two places:
1) for computing IsBasicBlockInsideInnermostLoop field of MCCodePaddingContext, and it is never used.
2) in emitBasicBlockLoopComments, which is called only if `isVerbose()` is true.
Despite that, we currently have a dependency on MachineLoopInfo, which makes
pass manager to compute it and MachineDominator Tree. This patch removes the
use (1) and makes the use (2) lazy, thus avoiding some redundant
recomputations.

Reviewers: opaparo, gadi.haber, rafael, craig.topper, zvi

Subscribers: rengolin, javed.absar, hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D44812

llvm-svn: 329542
2018-04-09 00:54:47 +00:00
Michael Zolotukhin fab7a676c2 State that CFG is preserved in 'Falkor HW Prefetch Fix Late Phase'.
That removes some redundant recomputations from the passes pipeline.

llvm-svn: 328272
2018-03-22 23:44:40 +00:00
Michael Zolotukhin 3520331f93 Reapply "[test] Add tests for llc passes pipelines." with a fix for bots with expensive checks on.
llvm-svn: 328267
2018-03-22 23:02:48 +00:00
Jonas Devlieghere 7e69dd02bb Revert "[test] Add tests for llc passes pipelines."
This reverts r328159 because the two AArch64 tests fail on GreenDragon:
http://green.lab.llvm.org/green/job/clang-stage1-cmake-RA-expensive/11030/

llvm-svn: 328188
2018-03-22 10:34:06 +00:00
Michael Zolotukhin 7e6fa1d6ae [test] Add tests for llc passes pipelines.
This is basically an extension of existing test
test/CodeGen/X86/O0-pipeline.ll introduced in r302608.

llvm-svn: 328159
2018-03-21 22:17:13 +00:00