specifiers. Fixes <rdar://problem/9607158>." because it causes false positives
on some code that uses CF toll free bridging.
- I'll let Doug or Ted figure out the right fix here, possibly just to accept
any pointer type.
llvm-svn: 134041
MaterializeTemporaryExpr captures a reference binding to a temporary
value, making explicit that the temporary value (a prvalue) needs to
be materialized into memory so that its address can be used. The
intended AST invariant here is that a reference will always bind to a
glvalue, and MaterializeTemporaryExpr will be used to convert prvalues
into glvalues for that binding to happen. For example, given
const int& r = 1.0;
The initializer of "r" will be a MaterializeTemporaryExpr whose
subexpression is an implicit conversion from the double literal "1.0"
to an integer value.
IR generation benefits most from this new node, since it was
previously guessing (badly) when to materialize temporaries for the
purposes of reference binding. There are likely more refactoring and
cleanups we could perform there, but the introduction of
MaterializeTemporaryExpr fixes PR9565, a case where IR generation
would effectively bind a const reference directly to a bitfield in a
struct. Addresses <rdar://problem/9552231>.
llvm-svn: 133521
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
Related result types apply Cocoa conventions to the type of message
sends and property accesses to Objective-C methods that are known to
always return objects whose type is the same as the type of the
receiving class (or a subclass thereof), such as +alloc and
-init. This tightens up static type safety for Objective-C, so that we
now diagnose mistakes like this:
t.m:4:10: warning: incompatible pointer types initializing 'NSSet *'
with an
expression of type 'NSArray *' [-Wincompatible-pointer-types]
NSSet *array = [[NSArray alloc] init];
^ ~~~~~~~~~~~~~~~~~~~~~~
/System/Library/Frameworks/Foundation.framework/Headers/NSObject.h:72:1:
note:
instance method 'init' is assumed to return an instance of its
receiver
type ('NSArray *')
- (id)init;
^
It also means that we get decent type inference when writing code in
Objective-C++0x:
auto array = [[NSMutableArray alloc] initWithObjects:@"one", @"two",nil];
// ^ now infers NSMutableArray* rather than id
llvm-svn: 132868
Also, have Environment stop looking through NoOp casts; it didn't match the behavior of LiveVariables. And once that's gone, the whole cast block of that switch is unnecessary.
llvm-svn: 132840
This introduces a generic base class for the expression evaluator
classes, which handles a few common expression types which were
previously handled separately in each class. Also, the expression
evaluator now uses ConstStmtVisitor.
llvm-svn: 131281
instantiation), be sure to add the transformed declaration into the
current DeclContext. Also, remove the -Wuninitialized hack that works
around this bug. Fixes <rdar://problem/9200676>.
llvm-svn: 129544
evaluated and unevaluated contexts. Add some testing of sizeof and
typeid.
Both of the typeid tests added here were triggering warnings previously.
Now the one false positive is suppressed without suppressing the warning
on actually buggy code.
llvm-svn: 129431
marked explicitly as uninitialized through direct self initialization:
int x = x;
With r128894 we prevented warnings about this code, and this patch
teaches the analysis engine to continue analyzing subsequent uses of
'x'. This should wrap up PR9624.
There is still an open question of whether we should suppress the
maybe-uninitialized warnings resulting from variables initialized in
this fashion. The definitely-uninitialized uses should always be warned.
llvm-svn: 128932
1) Change the CFG to include the DeclStmt for conditional variables, instead of using the condition itself as a faux DeclStmt.
2) Update ExprEngine (the static analyzer) to understand (1), so not to regress.
3) Update UninitializedValues.cpp to initialize all tracked variables to Uninitialized at the start of the function/method.
4) Only use the SelfReferenceChecker (SemaDecl.cpp) on global variables, leaving the dataflow analysis to handle other cases.
The combination of (1) and (3) allows the dataflow-based -Wuninitialized to find self-init problems when the initializer
contained control-flow.
llvm-svn: 128858
Note this can potentially be enhanced to detect if the __block variable
is actually written by the block, or only when the block "escapes" or
is actually used, but that requires more analysis than it is probably worth
for this simple check.
llvm-svn: 128681
my expertise on the template instantiation logic isn't good enough to fix this problem for real. This patch worksaround the
problem in -Wuninitialized, but we should fix it for real later.
llvm-svn: 128443
This rename serves two purposes:
- It reflects the actual functionality of this analysis.
- We will have more than one reachability analysis.
llvm-svn: 127930
Change the interface to expose the new information and deal with the enormous fallout.
Introduce the new ExceptionSpecificationType value EST_DynamicNone to more easily deal with empty throw specifications.
Update the tests for noexcept and fix the various bugs uncovered, such as lack of tentative parsing support.
llvm-svn: 127537
Instead, create a small set of Stmt* -> CFGBlock* mappings during CFG construction for only the statements we care about
relating to the diagnostics we want to check for reachability.
llvm-svn: 127396