removed as a duplicate header search path
The commit r126167 started passing the First index into RemoveDuplicates, but
forgot to update 0 to First in the loop that looks for the duplicate. This
resulted in a bug where an -iquoted search path was incorrectly removed if you
passed in the same path into -iquote and more than one time into -isystem.
rdar://23991350
Differential Revision: https://reviews.llvm.org/D27298
llvm-svn: 288491
Other AST consumers can deserialize interesting decls that we might
codegen, but they won't make it to the final object file and can trigger
assertions in debug information generation after finalization.
llvm-svn: 288221
This commit adds a new predefined macro named __OBJC_BOOL_IS_BOOL that describes
the Objective-C boolean type: its value is zero if the Objective-C boolean uses
the signed character type, otherwise its value is one as the Objective-C boolean
uses the builtin boolean type.
rdar://21170440
Differential Revision: https://reviews.llvm.org/D26234
llvm-svn: 287529
This option behaves in a similar spirit as -save-temps and writes
internal llvm statistics in json format to a file.
Differential Revision: https://reviews.llvm.org/D24820
llvm-svn: 282426
Original commit message:
Add -fdiagnostics-show-hotness
Summary:
I've recently added the ability for optimization remarks to include the
hotness of the corresponding code region. This uses PGO and allows
filtering of the optimization remarks by relevance. The idea was first
discussed here:
http://thread.gmane.org/gmane.comp.compilers.llvm.devel/98334
The general goal is to produce a YAML file with the remarks. Then, an
external tool could dynamically filter these by hotness and perhaps by
other things.
That said it makes sense to also expose this at the more basic level
where we just include the hotness info with each optimization remark.
For example, in D22694, the clang flag was pretty useful to measure the
overhead of the additional analyses required to include hotness.
(Without the flag we don't even run the analyses.)
For the record, Hal has already expressed support for the idea of this
patch on IRC.
Differential Revision: https://reviews.llvm.org/D23284
llvm-svn: 281293
Summary:
I've recently added the ability for optimization remarks to include the
hotness of the corresponding code region. This uses PGO and allows
filtering of the optimization remarks by relevance. The idea was first
discussed here:
http://thread.gmane.org/gmane.comp.compilers.llvm.devel/98334
The general goal is to produce a YAML file with the remarks. Then, an
external tool could dynamically filter these by hotness and perhaps by
other things.
That said it makes sense to also expose this at the more basic level
where we just include the hotness info with each optimization remark.
For example, in D22694, the clang flag was pretty useful to measure the
overhead of the additional analyses required to include hotness.
(Without the flag we don't even run the analyses.)
For the record, Hal has already expressed support for the idea of this
patch on IRC.
Differential Revision: https://reviews.llvm.org/D23284
llvm-svn: 281276
Since some profiling tools, such as gprof, ftrace, and uftrace, use
-pg option to generate a mcount function call at the entry of each
function. Function invocation can be detected by this hook function.
But mcount insertion is done before function inlining phase in clang,
sometime a function that already has a mcount call can be inlined in the
middle of another function.
This patch adds an attribute "counting-function" to each function
rather than emitting the mcount call directly in frontend so that this
attribute can be processed in backend. Then the mcount calls can be
properly inserted in backend after all the other optimizations are
completed.
Link: https://llvm.org/bugs/show_bug.cgi?id=28660
Reviewers: hans, rjmccall, hfinkel, rengolin, compnerd
Subscribers: shenhan, cfe-commits
Differential Revision: https://reviews.llvm.org/D22666
llvm-svn: 280355
rL275318 added the test Frontend/opencl.cl test, but that test was never actually run because Frontend/lit.local.cfg doesn't contain the '.cl' file suffix.
Once the test is activated, it fails with (unintended) compile errors in the newly added CHECK_INVALID_OPENCL_VERSION checks.
This patch adds the '.cl' file suffix to Frontend/lit.local.cfg to activate the test and fixes the test bug by adding '-fblocks' to the relevant command lines.
Patch by Martin Böhme!
Differential Revision: http://reviews.llvm.org/D22349
llvm-svn: 275405
Also fixes strict-aliasing option to only be allowed when OpenCL Version 1.0. Added testcase in test/Frontend/opencl-blocks.cl.
Patch by Aaron En Ye Shi.
Differential Revision: http://reviews.llvm.org/D22170
llvm-svn: 275318
Fix a regression which forbids using -std=cl|CL1.1|CL1.2|CL2.0 in driver.
Allow -std and -cl-std={cl|CL}{|1.1|1.2|2.0}.
Differential Revision: http://reviews.llvm.org/D20630
llvm-svn: 273015
Getting accurate locations for loops is important, because those locations are
used by the frontend to generate optimization remarks. Currently, optimization
remarks for loops often appear on the wrong line, often the first line of the
loop body instead of the loop itself. This is confusing because that line might
itself be another loop, or might be somewhere else completely if the body was
an inlined function call. This happens because of the way we find the loop's
starting location. First, we look for a preheader, and if we find one, and its
terminator has a debug location, then we use that. Otherwise, we look for a
location on an instruction in the loop header.
The fallback heuristic is not bad, but will almost always find the beginning of
the body, and not the loop statement itself. The preheader location search
often fails because there's often not a preheader, and even when there is a
preheader, depending on how it was formed, it sometimes carries the location of
some preceeding code.
I don't see any good theoretical way to fix this problem. On the other hand,
this seems like a straightforward solution: Put the debug location in the
loop's llvm.loop metadata. When emitting debug information, this commit causes
us to add the debug location as an operand to each loop's llvm.loop metadata.
Thus, we now generate this metadata for all loops (not just loops with
optimization hints) when we're otherwise generating debug information.
The remark test case changes depend on the companion LLVM commit r270771.
llvm-svn: 270772
Embedded bitcode should have private linkage instead of appending or external.
Otherwise, it will cause link failure due to duplicated symbols.
Also add llvm.embedded.module and llvm.cmdline to llvm.compiler.used so they
don't get optimized out.
rdar://problem/21555860
llvm-svn: 269679
Summary:
Teach clang to embed bitcode inside bitcode. When -fembed-bitcode cc1
option is used, clang will embed both the input bitcode and cc1
commandline into the bitcode in special sections before compiling to
the object file. Using -fembed-bitcode-marker will only introduce a
marker in both sections.
Depends on D17390
Reviewers: rsmith
Subscribers: yaron.keren, vsk, cfe-commits
Differential Revision: http://reviews.llvm.org/D17392
llvm-svn: 269202
It makes compiler-rt tests fail if the gold plugin is enabled.
Revert "Rework interface for bitset-using features to use a notion of LTO visibility."
Revert "Driver: only produce CFI -fvisibility= error when compiling."
Revert "clang/test/CodeGenCXX/cfi-blacklist.cpp: Exclude ms targets. They would be non-cfi."
llvm-svn: 267871
Bitsets, and the compiler features they rely on (vtable opt, CFI),
only have visibility within the LTO'd part of the linkage unit. Therefore,
only enable these features for classes with hidden LTO visibility. This
notion is based on object file visibility or (on Windows)
dllimport/dllexport attributes.
We provide the [[clang::lto_visibility_public]] attribute to override the
compiler's LTO visibility inference in cases where the class is defined
in the non-LTO'd part of the linkage unit, or where the ABI supports
calling classes derived from abstract base classes with hidden visibility
in other linkage units (e.g. COM on Windows).
If the cross-DSO CFI mode is enabled, bitset checks are emitted even for
classes with public LTO visibility, as that mode uses a separate mechanism
to cause bitsets to be exported.
This mechanism replaces the whole-program-vtables blacklist, so remove the
-fwhole-program-vtables-blacklist flag.
Because __declspec(uuid()) now implies [[clang::lto_visibility_public]], the
support for the special attr:uuid blacklist entry is removed.
Differential Revision: http://reviews.llvm.org/D18635
llvm-svn: 267784
OpenCL spec requires __OPENCL_C_VERSION__ to be defined based on -cl-std option. This patch implements that.
The patch also defines __FAST_RELAXED_MATH__ based on -cl-fast-relaxed-math option.
Also fixed a test using -std=c99 for OpenCL program. Limit allowed language standard of OpenCL to be OpenCL standards.
Differential Revision: http://reviews.llvm.org/D19071
llvm-svn: 267590
Clang should pass -backend-option to LLVM even though there is no target machine, since LLVM passes are used when emitting LLVM IR.
Differential Revision: http://reviews.llvm.org/D17552
llvm-svn: 266117
The GNU profiling support indicates that the interface is `_mcount` rather than
`mcount`. Conditionalise the behaviour according to the `-meabi gnu` flag.
Resolves PR27311
llvm-svn: 266039
It seems that there was a miscommunication between Renato and I, and the
original behaviour of AArch64 was to be preserved and not to mirror the new
behaviour. Restore the original behaviour for AArch64. Addresses post-commit
review comments from Renato Golin.
llvm-svn: 265899
This adds support to optionally support using `__gnu_mcount_nc` as the mcount
interface rather than `mcount` for Linux and EABI. The other targets do not
provide an implementation for `__gnu_mcount_nc`. This can be activated via the
`-meabi gnu` flag.
Resolves PR23969.
llvm-svn: 265888
profiling and optimization remarks and indicate that no debug info shall
be emitted for these compile units.
http://reviews.llvm.org/D18808
<rdar://problem/25427165>
llvm-svn: 265862
This allows plugins which add AST passes to also define pragmas to do things
like only enable certain behaviour of the AST pass in files where a certain
pragma is used.
Differential Revision: http://reviews.llvm.org/D18319
llvm-svn: 265295
-H in gcc mode doesn't print -include headers, but they are included in
depfiles written by MMD and friends. Since /showIncludes is what's used instead
of depfiles, printing /FI there seems important (and matches cl.exe).
Instead of giving HeaderIncludeGen more options, just switch on ShowAllHeaders
in clang-cl mode and let clang::InitializePreprocessor() not put -include flags
in the <command line> block. This changes the behavior of -E slightly, and it
removes the <command line> flag from the output triggered by setting the
obscure CC_PRINT_HEADERS=1 env var to true while running clang. Both of these
seem ok to change.
http://reviews.llvm.org/D18401
llvm-svn: 264174
Currently when an AST plugin is loaded it must then be enabled by passing
-plugin pluginname or -add-plugin pluginname to the -cc1 command line. This
patch adds a method to PluginASTAction which allows it to declare that the
action happens before, instead of, or after the main AST action, plus the
relevant changes to make the plugin action happen at that time automatically.
Differential Revision: http://reviews.llvm.org/D17959
llvm-svn: 263546
Re-commit of r258950 after fixing layering violation.
The related LLVM patch adds a backend diagnostic type for reporting
unsupported features, this adds a printer for them to clang.
In the case where debug location information is not available, I've
changed the printer to report the location as the first line of the
function, rather than the closing brace, as the latter does not give the
user any information. This also affects optimisation remarks.
llvm-svn: 259499
Re-commit of r258950 after fixing layering violation.
Add backend dignostic printer for unsupported features
The related LLVM patch adds a backend diagnostic type for reporting
unsupported features, this adds a printer for them to clang.
In the case where debug location information is not available, I've
changed the printer to report the location as the first line of the
function, rather than the closing brace, as the latter does not give the
user any information. This also affects optimisation remarks.
Differential Revision: http://reviews.llvm.org/D16591
llvm-svn: 259036
The related LLVM patch adds a backend diagnostic type for reporting
unsupported features, this adds a printer for them to clang.
In the case where debug location information is not available, I've
changed the printer to report the location as the first line of the
function, rather than the closing brace, as the latter does not give the
user any information. This also affects optimisation remarks.
Differential Revision: http://reviews.llvm.org/D16591
llvm-svn: 258950
With this change, most 'g' options are rejected by CompilerInvocation.
They remain only as Driver options. The new way to request debug info
from cc1 is with "-debug-info-kind={line-tables-only|limited|standalone}"
and "-dwarf-version={2|3|4}". In the absence of a command-line option
to specify Dwarf version, the Toolchain decides it, rather than placing
Toolchain-specific logic in CompilerInvocation.
Also fix a bug in the Windows compatibility argument parsing
in which the "rightmost argument wins" principle failed.
Differential Revision: http://reviews.llvm.org/D13221
llvm-svn: 249655
Current implementation may end up emitting an undefined reference for
an "inline __attribute__((always_inline))" function by generating an
"available_externally alwaysinline" IR function for it and then failing to
inline all the calls. This happens when a call to such function is in dead
code. As the inliner is an SCC pass, it does not process dead code.
Libc++ relies on the compiler never emitting such undefined reference.
With this patch, we emit a pair of
1. internal alwaysinline definition (called F.alwaysinline)
2a. A stub F() { musttail call F.alwaysinline }
-- or, depending on the linkage --
2b. A declaration of F.
The frontend ensures that F.inlinefunction is only used for direct
calls, and the stub is used for everything else (taking the address of
the function, really). Declaration (2b) is emitted in the case when
"inline" is meant for inlining only (like __gnu_inline__ and some
other cases).
This approach, among other nice properties, ensures that alwaysinline
functions are always internal, making it impossible for a direct call
to such function to produce an undefined symbol reference.
This patch is based on ideas by Chandler Carruth and Richard Smith.
llvm-svn: 247494
Current implementation may end up emitting an undefined reference for
an "inline __attribute__((always_inline))" function by generating an
"available_externally alwaysinline" IR function for it and then failing to
inline all the calls. This happens when a call to such function is in dead
code. As the inliner is an SCC pass, it does not process dead code.
Libc++ relies on the compiler never emitting such undefined reference.
With this patch, we emit a pair of
1. internal alwaysinline definition (called F.alwaysinline)
2a. A stub F() { musttail call F.alwaysinline }
-- or, depending on the linkage --
2b. A declaration of F.
The frontend ensures that F.inlinefunction is only used for direct
calls, and the stub is used for everything else (taking the address of
the function, really). Declaration (2b) is emitted in the case when
"inline" is meant for inlining only (like __gnu_inline__ and some
other cases).
This approach, among other nice properties, ensures that alwaysinline
functions are always internal, making it impossible for a direct call
to such function to produce an undefined symbol reference.
This patch is based on ideas by Chandler Carruth and Richard Smith.
llvm-svn: 247465