Prior to the introduction of the FLUSH statement in Fortran 2003,
implementations provided a FLUSH subroutine.
We can't yet put Fortran code into the runtime, so this subroutine
is in C++ with a Fortran-mangled entry point name.
Differential Revision: https://reviews.llvm.org/D115289
This patch adds the runtime function to allocate and
deallocate ragged arrays.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D114534
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
In error cases it is possible to CLOSE a unit that has not
been successfully connected, so don't crash when the file descriptor
is negative.
Differential Revision: https://reviews.llvm.org/D115165
When closing all open units, don't hold the unit map lock
over the actual close operations; if one of those aborts,
CloseAll() may be called and then deadlock.
Differential Review: https://reviews.llvm.org/D115184
RECL= is required for direct access I/O, but is permitted
as well for sequential I/O, where it is defined by the
standard to specify a maximum record (line) length.
The standard does not say what should happen when an
sequential formatted input record appears whose length is
unequal to RECL= when it is specified.
Precedents from other compilers are unclear: one raises an error,
some honor RECL= as an effective truncation, and a few ignore the
situation. On output, all other compilers tested raised an
error when an attempt is made to emit a record longer than RECL=.
This patch treats RECL= as effective truncation on input and
as a hard limit with error on output, and also ensures that
RECL= can be set *longer* than the actual input record lengths.
Differential Revision: https://reviews.llvm.org/D115102
In TRANSFER runtime the result was an array only if the MOLD was an array.
This is not in line with TRANSFER definition in 16.9.193 that rules that it
must also be an array if MOLD is scalar and SIZE if provided.
Differential Revision: https://reviews.llvm.org/D114943
STOP statement output was sometimes failing to appear because
the runtime flushes and shuts down open Fortran units beforehand.
But when file descriptor 2 was closed, the STOP statement output
was suppressed. The fix is to not actually close file descriptors
0-2 if they are connected to Fortran units being closed. This was
already the policy when an OPEN statement was (re-)opening such a
unit, so that logic has been pulled out into a member function and
shared with CLOSE processing.
Differential Revision: https://reviews.llvm.org/D114897
Create a new flang/runtime/support.cpp module to hold miscellaneous
runtime APIs to support lowering, and define an API IsContiguous() to
wrap the member function predicate Descriptor::IsContiguous().
And do a little clean-up of other API headers that don't need to expose
Runtime/descriptor.h.
Differential Revision: https://reviews.llvm.org/D114752
INQUIRE(POSITION=)'s results need to reflect the POSITION=
specifier used for the OPEN statement until the unit has been
repositioned. Preserve the POSITION= from OPEN and used it
for INQUIRE(POSITION=) until is becomes obsolete.
INQUIRE(PAD=) is implemented here in the case of an unconnected unit
with Fortran 2018 semantics; i.e., "UNDEFINED", rather than Fortran 90's
"YES"/"NO" (see 4.3.6 para 2). Apparent failures with F'90-only tests
will persist with INQUIRE(PAD=); these discrepancies don't seem to warrant
an option or environment variable.
To make the implementation of INQUIRE more closely match the language
in the standard, rename IsOpen() to IsConnected(), and use it explicitly
for the various INQUIRE specifiers.
Differential Revision: https://reviews.llvm.org/D114755
RESHAPE() fails inappropriately at runtime if the source array
is larger than the result -- which is perfectly valid -- because
of an obviously reversed comparison of their numbers of elements
is activating the runtime asserts meant for the opposite case
(source smaller than result).
Differential Revision: https://reviews.llvm.org/D114474
A recent patch to real/complex formatted input included what must
have been an editing hiccup: "++ ++p" instead of "++p". This
compiles, and it broke the consumption of the trailing ')' of a
complex value in namelist input by skipping over the character.
Extend existing test to cover this case.
Differential Revision: https://reviews.llvm.org/D114297
This is a near-universal language extension; external unit 0
is preconnected to the standard error output.
Differential Revision: https://reviews.llvm.org/D114298
In 'STOP bye bye', do not print 'Fortran STOP:` before 'bye bye' when
NO_STOP_MESSAGE environment variable is set at runtime.
Also only exit with code 1 in StopStatementText if this is an ERROR STOP.
This matches other compiler behaviors.
Move STOP related unit tests in their own test file and add new tests to
cover this change.
Differential Revision: https://reviews.llvm.org/D114152
The predefined units were not being initialized with FORM='FORMATTED',
so INQUIRE(PAD=) was failing if no I/O had already been done.
INQUIRE(POSITION=) was returning 'REWIND' on stdin/stdout (which
is somewhat defensible from the definition, and is what Intel Fortran
does), but most implementations return 'ASIS'. Change the runtime
to return 'REWIND' only for positionable external files, but 'ASIS'
for terminals, sockets, &c.
Differential Revision: https://reviews.llvm.org/D114028
The inquire by output list form of the INQUIRE statement calculates the
number of file storage units that would be required to store the data
of an output list in an unformatted file. Currently, the result is
incorrectly multiplied by the number of bytes for a data type. A query
for "INTEGER(KIND=4) A(10)" should be 40, not 160.
Update formatting.
1. To avoid overwriting the part of the record read in the non advancing read,
the furtherPositionInRecord field must be set to the max of the
furtherPositionInRecord and the positionInRecord at the beginning of the
IO write.
2. To allow any further read to succeed after the write, the unit
beganReadingRecord_ must be set to false when resetting the recordLength
during the write, otherwise, recordLength will not be computed in further
read and an assert is hit (at unit.cpp(398)).
The added unit test exercises both of these scenarios.
Differential Revision: https://reviews.llvm.org/D113740
Profiling a basic internal real input read benchmark shows some
hot spots in the code used to prepare input for decimal-to-binary
conversion, which is of course where the time should be spent.
The library that implements decimal to/from binary conversions has
been optimized, but not the code in the Fortran runtime that calls it,
and there are some obvious light changes worth making here.
Move some member functions from *.cpp files into the class definitions
of Descriptor and IoStatementState to enable inlining and specialization.
Make GetNextInputBytes() the new basic input API within the
runtime, replacing GetCurrentChar() -- which is rewritten in terms of
GetNextInputBytes -- so that input routines can have the
ability to acquire more than one input character at a time
and amortize overhead.
These changes speed up the time to read 1M random reals
using internal I/O from a character array from 1.29s to 0.54s
on my machine, which on par with Intel Fortran and much faster than
GNU Fortran.
Differential Revision: https://reviews.llvm.org/D113697
When an Fw.d output edit descriptor has a "d" value exactly
equal to the number of zeroes after the decimal point for a value
(e.g., 0.07 with F5.1), the Fw.d output editing code needs to
do the rounding itself to either 0.0 or 0.1 after performing
a conversion without rounding (to avoid 0.04999 rounding up twice).
Differential Revision: https://reviews.llvm.org/D113698
When an environment variable NO_STOP_MESSAGE=1 is set,
assume that STOP statements with a successful code
have QUIET=.TRUE.
Differential Revision: https://reviews.llvm.org/D113701
The ORDER= argument to the transformational intrinsic function RESHAPE
was being misinterpreted in an inverted way that could be detected only
with 3-d or higher rank array. Fix in both folding and the runtime, and
extend tests.
Differential Revision: https://reviews.llvm.org/D113699
The source index should not be compared to zero after applying the
shift with the modulo, it must be compared to the lower bound.
Otherwise, the extent is not added in case it should and the computed
source index may be less than the lower bound, causing invalid results.
Differential Revision: https://reviews.llvm.org/D113659
Component::CreatePointerDescriptor unconditionally expects a
vector of subscripts to be passed as an argument, but is called
from NAMELIST input with a null pointer. Make that argument
a nullable pointer, move it to the end of the argument list,
and give it a default value of nullptr.
Differential Revision: https://reviews.llvm.org/D113312
When processing the devious NAMELIST input
&group logarray = t t t
= 666 /
for LOGICAL::logarray(3) and INTEGER::t, the runtime library
needs to do some look-ahead on the input stream to make sure
that the last "t" on the first line is a truth value rather than
an item name -- which in this case it is. This look-ahead
was implemented in a previous patch but only worked for internal
input cases; this patch implements look-ahead capabilities for
input from an external file, too (and also adjusts repeated
list-directed input items to use this infrastructure, too).
Differential Revision: https://reviews.llvm.org/D113311
If the source has an addendum, the descriptor that is being established
to describe a section over the source needs to copy the addendum so that
derived type information is correctly set in the descriptor being
established.
This allows namelist IO with derived type to work correctly.
Differential Revision: https://reviews.llvm.org/D113258
Implement the second entry point for GET_ENVIRONMENT_VARIABLE. Reuse
existing bits and pieces wherever possible.
This patch also increases CFI_* error codes in order to avoid conflicts.
GET_ENVIRONMENT_VARIABLE is required to return a status of 1 if an
environment variable does not exist and 2 if environment variables are
not supported. However, if we add status codes for that they will
conflict with CFI_ERROR_BASE_ADDR_NULL and CFI_ERROR_BASE_ADDR_NOT_NULL,
which are also 1 and 2 at the moment. We therefore move all CFI error
codes up (an arbitrary) 10 spots to make room. Hopefully this isn't
a problem, since we weren't matching the CFI error codes that gfortran
uses anyway. It may still be an issue if any other runtime functions
will need to return a status of 1 or 2, but we should probably deal with
that when/if it occurs.
Differential Revision: https://reviews.llvm.org/D112698
A recent change caused some variable-length sequential formatted
output statements with record positioning at the end of a FORMAT
(e.g., FORMAT('hi',10X) to append blanks at the end of the completed
record when emitting it.
Differential Revision: https://reviews.llvm.org/D112742
Add support for reading environment variables directly, via std::getenv.
This needs to allocate a C-style string to pass into std::getenv. If the
memory allocation for that fails, we terminate.
This also changes the interface for EnvVariableLength to receive the
source file and line so we can crash gracefully.
Note that we are now completely ignoring the envp pointer passed into
ProgramStart, since that could go stale if the environment is modified
during execution.
Differential Revision: https://reviews.llvm.org/D111785
The 'A' edit descriptor once served as a form of raw I/O of bytes
to/from variables that weren't of type CHARACTER (which itself
didn't exist until F'77). This usage was especially common for
output of numeric variables that had been initialized with Hollerith.
Differential Revision: https://reviews.llvm.org/D112346
NAMELIST input can contain array subscripts with triplet notation.
The calculation of the default effective stride for the constructed
array descriptor was simply incorrect after the first dimension.
Differential Revision: https://reviews.llvm.org/D112347
A build-time check in a template class instantiation was applying
a test that's meaningful only for numeric types.
Differential Revision: https://reviews.llvm.org/D112345
A CHARACTER variable used as an output format may contain
unquoted tab characters, which are treated as if they had
been quoted. This is an extension supported by all other
Fortran compilers to which I have access.
Differential Revision: https://reviews.llvm.org/D112350
ExternalFileUnit::BeginReadingRecord() must be called at least once
during an external formatted READ statement before FinishReadingRecord().
In the case of a formatted external READ with no data items, the call
to finish processing of the format (which might have lingering control
items that need doing) was taking place before the call to BeginReadingRecord
from ExternalIoStatementState::EndIoStatement. Add a call to
BeginReadingRecord on this path.
Differential Revision: https://reviews.llvm.org/D112351
NAMELIST array input does not need to fully define an array.
If another input item begins after at least one element,
it ends input into the array and the remaining items are
not modified.
The tricky part of supporting this feature is that it's not
always easy to determine whether the next non-blank thing in
the input is a value or the next item's name, esp. in the case
of logical data where T and F can be names. E.g.,
&group logicalArray = t f f t
= 1 /
should read three elements into "logicalArray" and then read
an integer or real variable named "t".
So the I/O runtime has to do some look-ahead to determine whether
the next thing in the input is a name followed by '=', '(', or '%'.
Since the '=' may be on a later record, possibly with intervening
NAMELIST comments, the runtime has to support a general form of
saving and restoring its current position. The infrastructure
in the I/O runtime already has to support repositioning for
list-directed repetition, even on non-positionable input sources
like terminals and sockets; this patch adds an internal RAII API
to make it easier to save a position and then do arbitrary
look-ahead.
Differential Revision: https://reviews.llvm.org/D112245
The runtime library was emitting unformatted record headers and
footers when an external unit had no fixed RECL=. This is wrong
for sequential files, which should have headers & footers even
with RECL. Change to omit headers & footers from unformatted
I/O only for direct access files.
Differential Revision: https://reviews.llvm.org/D112243
Search for the environment variable in the envp string passed to
ProgramStart. This doesn't work if the main program isn't Fortran.
Differential Revision: https://reviews.llvm.org/D111394
B/O/Z integer output editing must not reflect any sign extension
of scalar output values. Add more size-dependent OutputInteger
I/O APIs and kind instantiations of EditIntegerOutput.
Differential Revision: https://reviews.llvm.org/D111678
To get proper wrap-around behavior for the various kind parameter
values of the optional COUNT= and COUNT_MAX= dummy arguments to
the intrinsic subroutine SYSTEM_CLOCK, add an extra argument to
the APIs for lowering to pass the integer kind of the actual argument.
Avoid confusion by requiring that both actual arguments have the same
kind when both are present. The results of the runtime functions
remain std::int64_t and lowering should still convert them before
storing to the actual argument variables.
Rework the implementation a bit to accomodate the dynamic
specification of the kind parameter, and to clean up some coding
issues with preprocessing and templates.
Use the kind of the COUNT=/COUNT_MAX= actual arguments to determine
the clock's resolution, where possible, in conformance with other
Fortran implementations.
Differential Revision: https://reviews.llvm.org/D111281
Add explicit documentation for a couple of cases where the Fortran
standard has been observed to be ambiguous or nonspecific and we've
had to choose the behavior of the implementation from some possible
alternatives (and may be distinct from other implementations).
Differential Revision: https://reviews.llvm.org/D111446
Blank input fields must be interpreted as zero, including the case of
virutal space characters generated from record padding at the end of
an input record. This stopped working sometime in the past few months
for real input (not sure when); here's a fix.
This bug was breaking FCVS test fm111.
Differential Revision: https://reviews.llvm.org/D110765
Revert "[flang][NFC] Add debug dump method to evaluate::Expr and semantics::Symbol"
This reverts commit b0e35fde21.
Revert "[flang] Add a wrapper for Fortran main program"
This reverts commit 2c1ce0755e.
Revert "[flang][NFC] Fix header comments in some runtime headers"
This reverts commit a63f57674d.
Add a C wrapper that calls the Fortran runtime initialization and
finalization routines as well as the compiled Fortran main program
_QQmain.
Place it in its own library to satisfy shared library builds since it
contains a C main function.
- cc7ac498f9 (diff-fa35a5efa62731fd2845e5e982eca9a2e36439783e11a4e4a463753c2160ec10R53)
- was created in flang/test/Examples/main.c in Eric's branch
Support the extension intrinsic subroutines EXIT([status]) and ABORT()
in the intrinsic table and runtime support library. Lowering remains
to be done.
Differential Revision: https://reviews.llvm.org/D110741
Recommit https://reviews.llvm.org/D109813 and
https://reviews.llvm.org/D109814.
This implements the second and final entry point for GET_COMMAND_ARGUMENT,
handling the VALUE, STATUS and ERRMSG parameters.
It has a small fix in that we're now using memcpy instead of strncpy
(which was a bad idea to begin with, since we're not actually interested
in a string copy).
This reverts commit 0446f1299f and
df6302311f.
There's a warning on flang-aarch64-latest-gcc related to strncpy using
the result of strlen as a bound. I'll recommit with a fix.
Implement the final part of GET_COMMAND_ARGUMENT, i.e. the handling of
ERRMSG. This uses some of the infrastructure in stat.h and gets rid of
the magic numbers that we were using for return codes.
Differential Revision: https://reviews.llvm.org/D109814
Partial implementation for the second entry point for
GET_COMMAND_ARGUMENT. It handles the VALUE and STATUS arguments, and
doesn't touch ERRMSG.
Differential Revision: https://reviews.llvm.org/D109813
Implement the ArgumentLength entry point of GET_COMMAND_ARGUMENT. Also
introduce a fixture for the tests.
Note that this also changes the interface for ArgumentLength from
returning a 4-byte integer to returning an 8-byte integer.
Differential Revision: https://reviews.llvm.org/D109227
Count input characters corresponding to formatted edit descriptors
for READ(SIZE=); count output bytes for INQUIRE(IOLENGTH=).
The I/O APIs GetSize() and GetLength() were adjusted to return
std::size_t as function results.
Basic unit tests were added (and others fixed).
Differential Revision: https://reviews.llvm.org/D110291
When compiling the runtime with a version of clang-cl newer than 12, we
define CMPLXF as __builtin_complex, which returns a float _Complex type.
This errors out in contexts where the result of CMPLXF is expected to be
a float_Complex_t. This is defined as _Fcomplex whenever _MSC_VER is
defined (and as float _Complex otherwise).
This patch defines float_Complex_t & friends as _Fcomplex only when
we're using "true" MSVC, and not just clang-pretending-to-be-MSVC. This
should only affect clang-cl >= 12.
Differential Revision: https://reviews.llvm.org/D110139
When an end of record is met in non advancing IO:
- Set IOSTAT if present according to 12.11.4 (5).
- Position the file to the next record (12.11.4 (4)).
The previous code was only signaling EOR for fixed record length IO.
Reading at 12.11.4, I do not find the rational for this condition, so I
removed it.
It also does not seem the presence of padding should prevent
the EOR signaling.
The positionning to the next record was block when EOR is signaling
in FinishReadingRecord because ErrorHandler.isError() is true in this
case.
EOR in input is not an error, but I am not confident to modify
ErrorHandler.isError() to cover that. However, In FinishReadingRecord,
the code should not bail if the error is simply an end of record.
I did not check the SIZE requirements here because GetSize runtime is
not yet implemented.
Differential Revision: https://reviews.llvm.org/D109505
The preprocessor definitions __BYTE_ORDER__, __ORDER_BIG_ENDIAN__, and
__ORDER_LITTLE_ENDIAN__ are gcc extensions (also supported by clang),
but msvc (and others) do not define them. As a result __BYTE_ORDER__
and __ORDER_BIG_ENDIAN__ both evaluate to 0 by the prepreprocessor,
and __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__, the first `#if` condition
to 1, hence assuming the wrong byte order for x86(_64).
This patch instead uses CMake's TestBigEndian module to determine
target architecture's endianness at configure-time.
Note this also uses the same mechanism for the runtime. If compiling
flang as a cross-compiler, the runtime for the compile-target must be
built separately (Flang does not support the LLVM_ENABLE_RUNTIMES
mechanism yet).
Fixes llvm.org/PR51597
Reviewed By: ijan1, Leporacanthicus
Differential Revision: https://reviews.llvm.org/D109108
Move the closure of the subset of flang/runtime/*.h header files that
are referenced by source files outside flang/runtime (apart from unit tests)
into a new directory (flang/include/flang/Runtime) so that relative
include paths into ../runtime need not be used.
flang/runtime/pgmath.h.inc is moved to flang/include/flang/Evaluate;
it's not used by the runtime.
Differential Revision: https://reviews.llvm.org/D109107
Grab whatever ProgramStart has stored in executionEnvironment.argc and
subtract 1 (based on the assumption that ProgramStart is called with
a C-style argc that counts the command name as an argument).
Spoiler alert: The tests will evolve into fixtures when we implement
GET_COMMAND_ARGUMENT etc.
Differential Revision: https://reviews.llvm.org/D109048
The standard specifies that the form must be set to a default at the
end of an open statement (C.7.4 point 2) where it was not specified.
Only in the case of a pre-connected unit can the form be deferred
until the first data transfer statement.
Set back the default form setting in OpenStatementState::EndIoStatement
that had been removed when deferring the pre-connected unit from setting
in 199a623ebf.
Also return "UNDEFINED" instead of "UNKNOWN" to the FORM inquiry when the
form was not yet specified as defined in 12.10.2.12.
Related test: syntax 215a216.
Differential Revision: https://reviews.llvm.org/D108990
GET_COMMAND_ARGUMENT takes a lot of optional arguments: VALUE, LENGTH,
STATUS and ERRMSG. This patch breaks up the interface into 2 different
functions:
* One for getting the LENGTH of an argument.
* One for getting the VALUE and the ERRMSG of an argument. This returns
the STATUS, which can be easily ignored by lowering if it is missing in
the invocation.
Differential Revision: https://reviews.llvm.org/D108688
Use gettimeofday and localtime_r to implement DATE_AND_TIME intrinsic.
The Windows version fallbacks to the "no date and time information
available" defined by the standard (strings set to blanks and values to
-HUGE).
The implementation uses an ifdef between windows and the rest because
from my tests, the SFINAE approach leads to undeclared name bogus errors
with clang 8 that seems to ignore failure to instantiate is not an error
for the function names (i.e., it understands it should not instantiate
the version using gettimeofday if it is not there, but still yields an
error that it is not declared on the spot where it is called in the
uninstantiated version).
Differential Revision: https://reviews.llvm.org/D108622
BACKSPACE leaves "recordLength" set, which is fine for a later READ,
but it causes a later WRITE to fail due to a misinterpretation of the
knowledge of the record length as indication of a fixed-length record
file (RECL=). Fix.
Differential Revision: https://reviews.llvm.org/D108594
This is very similar to CPU_TIME, except that we return nanoseconds
rather than seconds. This means we're potentially dealing with rather
large numbers, so we'll have to wrap around to avoid overflows.
Differential Revision: https://reviews.llvm.org/D105970
Add an implementation for the runtime functions related to SYSTEM_CLOCK.
As with CPU_TIME, this is based on std::clock(), which should be
available everywhere, but it is highly recommended to add
platform-specific implementations for systems where std::clock() behaves
poorly (e.g. POSIX).
The documentation for std::clock() doesn't specify a maximum value and
in fact wrap around behaviour is non-conforming. Therefore, this
implementation of SYSTEM_CLOCK is not guaranteed to wrap around either,
and after std::clock reaches its maximum value we will likely just
return failure rather than wrap around. If this happens often on your
system, please add a new platform-specific implementation.
We define COUNT_MAX as either the maximum value that can be stored in
a std::clock_t or in a 64-bit integer (whichever is smaller), and
COUNT_RATE as CLOCKS_PER_SEC. For POSIX systems, the value of
CLOCKS_PER_SEC is hardcoded to 10^6 and irrelevant for the values
returned by std::clock.
Differential Revision: https://reviews.llvm.org/D105969
When the vector version of EOSHIFT was called, the BOUNDARY argument was being
ignored. I fixed that and added a test that would not pass without this fix.
Differential Revision: https://reviews.llvm.org/D108249
NAMELIST input needs to start with a call to BeginReadingRecord().
Internal unit input doesn't care (so unit tests were passing), but
external unit input does need the call and will assert without it.
Differential Revision: https://reviews.llvm.org/D108051
A recent runtime I/O change[1] was meant to improve the handling of
input from external files missing a terminal newline on their last
records; the change was "triggered" by the wrong circumstances and
causing reads that should have pulled more data into the buffer to be
treated as EOFs. So fix that, and also don't retain input data
in the buffer once an input record has been finished unless it's
known that list-directed or NAMELIST input of a repeated input item
may need to backspace a non-positionable external unit to return
to the beginning of the repeated item.
[1] 6578893a0453384346f149479f8574dfff977ace
Differential Revision: https://reviews.llvm.org/D108164
std::clock_t can be an unsigned value on some platforms like MacOS and
therefore needs a cast when initializing an std::clock_t value with -1.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D107972
A repeated null value at the end of an input record with a count > 1
would incorrectly advance to the next record when resumed. Fix.
Improve some poor naming and code flow noticed while debugging, so
next time will be easier.
Extend a unit test to check this case.
Differential Revision: https://reviews.llvm.org/D107917
Some build environments complain about unused data members in some
C++ translations of Fortran derived types; those members don't really
need to be present, so remove them.
Fix pushed w/o review to get build bots running again.
Define an API for, and implement, runtime support for arbitrary
assignment of one descriptor's data to another, with full support for
(re)allocation of allocatables with finalization when necessary,
user-defined derived type assignment TBP calls, and intrinsic (default)
componentwise assignment of derived type instances with allocation of
automatic components. Also clean up API and implementation of
finalization/destruction using knowledge gained while studying
edge cases for assignment in the 2018 standard.
The look-up procedure for special procedure bindings in derived
types has been optimized from O(N) to O(1) since it will probably
matter more. This required some analysis in runtime derived type
description table construction in semantics and some changes to the
table schemata.
Executable Fortran tests have been developed; they'll be added
to the test base once they can be lowered and run by f18.
Differential Revision: https://reviews.llvm.org/D107678
The algorithm for Fw.d output will drive binary to decimal conversion for
an initial fixed number of digits, then adjust that number based on the
result's exposent. For value close to a power of ten, this adjustment
process wouldn't terminate; e.g., formatting 9.999 as F10.2 would start
with 1e2, boost the digits to 2, get 9.99e1, decrease the digits, and loop.
Solve by refusing to boost the digits a second time.
Differential Revision: https://reviews.llvm.org/D107490
result descriptor (e.g., maxloc, minloc, maxval, minval, all, any, count,
parity, findloc, etc.)
Also add a scalar case for these intrinsic unit tests.
Differential Revision: https://reviews.llvm.org/D106820
Fix the external-io unittest under Windows.
In particular, fixes the following issues:
1. When creating a temporary file, open it with read+write permissions
using the _O_RDWR flag. _S_IREAD and _S_IWRITE are for the file
permissions of the created file.
2. _chsize returns 0 on success (just like ftruncate).
3. To set a std::optional, use its assign-operator overload instead of
getting a reference to its value and overwrite that. The latter is
invalid if the std::optional has no value, and is caught by
msvc's debug STL.
The non-GTest unittest is currently not executed under Windows because
of the added .exe extension to the output file: external-io.text.exe.
llvm-lit skips the file because .exe is not in the lists of test
suffixes (.test is). D105315 is going to change that by converting it
to a GTest-test.
Reviewed By: awarzynski
Differential Revision: https://reviews.llvm.org/D106726
When a WRITE overwrites an endfile record, we need to forget
that there was an endfile record. When doing a BACKSPACE
after an explicit ENDFILE statement, the position afterwards
must be upon the endfile record.
Attempts to join list-directed delimited character input across
record boundaries was due to a bad reading of the standard
and has been deleted, now that the requirements are better understood.
This problem would cause a read attempt past EOF if a delimited
character input value was at the end of a record.
It turns out that delimited list-directed (and NAMELIST) character
output is required to emit contiguous doubled instances of the
delimiter character when it appears in the output value. When
fixed-size records are being emitted, as is the case with internal
output, this is not possible when the problematic character falls
on the last position of a record. No two other Fortran compilers
do the same thing in this situation so there is no good precedent
to follow.
Because it seems least wrong, with this patch we now emit one copy
of the delimiter as the last character of the current record and
another as the first character of the next record. (The
second-least-wrong alternative might be to flag a runtime error,
but that seems harsh since it's not an explicit error in the standard,
and the output may not have to be usable later as input anyway.)
Consequently, the output is not suitable for use as list-directed or
NAMELIST input.
If a later standard were to clarify this case, this behavior will of
course change as needed to conform.
Differential Revision: https://reviews.llvm.org/D106695
NAMELIST I/O formatting uses the runtime infrastructure for
list-directed I/O. List-directed input processing has same state
that requires reinitialization for each successive NAMELIST input
item. This patch fixes bugs with "null" items and repetition counts
on NAMELIST input items after the first in the group.
Differential Revision: https://reviews.llvm.org/D106694
This change fixes a bug in the runtime portion of the CSHIFT intrinsic
that happens when the value of the SHIFT argument is negative.
Differential Revision: https://reviews.llvm.org/D106292
A field in DescriptorAddendum became unused during a recent
change but was not removed from the definition; it now elicits
a legitimate warning that's affecting some buildbots. Remove it.
F18 was sigalling an end-of-file error condition when reading an
unformatted sequential input file without an ultimate newline
(or CR-LF). Other Fortran implementations can handle it, so change
the runtime to support it.
Differential Revision: https://reviews.llvm.org/D106321
Use derived type information tables to drive default component
initialization (when needed), component destruction, and calls to
final subroutines. Perform these operations automatically for
ALLOCATE()/DEALLOCATE() APIs for allocatables, automatics, and
pointers. Add APIs for use in lowering to perform these operations
for non-allocatable/automatic non-pointer variables.
Data pointer component initialization supports arbitrary constant
designators, a F'2008 feature, which may be a first for Fortran
implementations.
Differential Revision: https://reviews.llvm.org/D106297
A rank-0 static descriptor needs to be a vector; it's for
"v-list" values in defined derived type formatted I/O.
(Pushed without pre-review due to high confidence and an
unwell buildbot.)
SYSTEM_CLOCK may take up to 3 optional parameters, all of which are
INTENT(OUT). The COUNT and COUNT_MAX parameters are integer scalars,
while COUNT_RATE may be a real or integer scalar.
This patch breaks up the interface into 3 different functions, one for
each parameter. All 3 return integers. It is up to lowering to convert
the results to the preferred type.
Differential Revision: https://reviews.llvm.org/D104851
Non-advancing I/O was failing; ExternalFileUnit was losing
track of what writes had been committed to the file. Fixed.
Also, support the common extension of $ and \ in a FORMAT
as being equivalent to ADVANCE=NO.
Differential Revision: https://reviews.llvm.org/D105046
With derived type description tables now available to the
runtime library, it is possible to implement the concept
of "child" I/O statements in the runtime and use them to
convert instances of derived type I/O data transfers into
calls to user-defined subroutines when they have been specified
for a type. (See Fortran 2018, subclauses 12.6.4.8 & 13.7.6).
- Support formatted, list-directed, and NAMELIST
transfers to internal parent units; support these, and unformatted
transfers, for external parent units.
- Support nested child defined derived type I/O.
- Parse DT'foo'(v-list) FORMAT data edit descriptors and passes
their strings &/or v-list values as arguments to the defined
formatted I/O routines.
- Fix problems with this feature encountered in semantics and
FORMAT valiation during development and end-to-end testing.
- Convert typeInfo::SpecialBinding from a struct to a class
after adding a member function.
Differential Revision: https://reviews.llvm.org/D104930
A recent change that extended semantic analysis for actual arguments
that associate with procedure dummy arguments exposed some bugs in
regression test suites due to points of confusion in symbol table
handling in situations where a generic interface contains a specific
procedure of the same name. When passing that name as an actual
argument, for example, it's necessary to take this possibility into
account because the symbol for the generic interface shadows the
symbol of the same name for the specific procedure, which is
what needs to be checked. So add a small utility that bypasses
the symbol for a generic interface in this case, and use it
where needed.
Differential Revision: https://reviews.llvm.org/D104929
argument instead of a result result object.
Change the reshape flang unit test to use the new interface. Also, add an
order argument to exercise the order subscript code in the rehsape runtime
routine.
Differential Revision: https://reviews.llvm.org/D104586
One of the buildbots uses a compiler (can't tell which) that
doesn't approve of a "default:" in a switch statement whose
cases appear to completely cover all possible values of an
enum class. But this switch is in raw data dumping code that
needs to allow for incorrect values in memory. So rewrite it
as a cascade of if statements; performance doesn't matter here.
This is *not* user-defined derived type I/O, but rather Fortran's
built-in capabilities for using derived type data in I/O lists
and NAMELIST groups.
This feature depends on having the derived type description tables
that are created by Semantics available, passed through compilation
as initialized static objects to which pointers can be targeted
in the descriptors of I/O list items and NAMELIST groups.
NAMELIST processing now handles component references on input
(e.g., "&GROUP x%component = 123 /").
The C++ perspectives of the derived type information records
were transformed into proper classes when it was necessary to add
member functions to them.
The code in Semantics that generates derived type information
was changed to emit derived type components in component order,
not alphabetic order.
Differential Revision: https://reviews.llvm.org/D104485
Use a "double-double" accumulator, a/k/a Kahan summation,
in the SUM intrinsic in the runtime for real & complex.
This seems to be the best-recommended technique for reducing
error, as opposed to the initial implementation of SUM's
distinct accumulators for positive and negative items.
Differential Revision: https://reviews.llvm.org/D104338
Implement constant folding for the reduction transformational
intrinsic functions MAXVAL and MINVAL.
In anticipation of more folding work to follow, with (I hope)
some common infrastructure, these two have been implemented in a
new header file.
Differential Revision: https://reviews.llvm.org/D104337
When chasing down another unrelated bug, I noticed that the
implementations of various character intrinsic functions assume
that the lower bounds of (some of) their arguments were 1.
This isn't necessarily the case, so I've cleaned them up, tweaked
the unit tests to exercise the fix, and regularized the allocation
pattern used for results to use SetBounds() before Allocate() rather
than the old original Descriptor::Allocate() wrapper around
CFI_allocate().
Since there were few other remaining uses of the old original
Descriptor::Allocate() wrapper, I also converted them to the
new one and deleted the old one.
Differential Revision: https://reviews.llvm.org/D104325
Flang diverges from the llvm coding style in that it requires braces
around the bodies of if/while/etc statements, even when the body is
a single statement.
This commit adds the readability-braces-around-statements check to
flang's clang-tidy config file. Hopefully the premerge bots will pick it
up and report violations in Phabricator.
We also explicitly disable the check in the directories corresponding to
the Lower and Optimizer libraries, which rely heavily on mlir and llvm
and therefore follow their coding style. Likewise for the tools
directory.
We also fix any outstanding violations in the runtime and in
lib/Semantics.
Differential Revision: https://reviews.llvm.org/D104100
Add an implementation for CPU_TIME using the POSIX function
clock_gettime. I think on most POSIX systems this will be included for
free via <ctime>, which corresponds to "time.h" (YMMV, we can fix the
code if the need arises).
Detecting that clock_gettime is available is tricky. For instance, commit
827407a86a used the following incantation in f18-parse-demo.cpp:
#if _POSIX_C_SOURCE >= 199309L && _POSIX_TIMERS > 0 && _POSIX_CPUTIME && \
defined CLOCK_PROCESS_CPUTIME_ID
This doesn't work on my AArch64 Ubuntu system, which provides
clock_gettime but doesn't define _POSIX_TIMERS. Since finding the right
combination of macros requires infinite time, patience and access to
sundry POSIX systems, we should probably try a different approach.
This patch attempts to use SFINAE instead of the preprocessor to choose
an implementation for CPU_TIME. We define a helper function template
which helps us check if clock_gettime is available (and has the
interface we expect). I hope the comments explain it well enough.
This approach has the advantage that it keeps the detection of
clock_gettime close to the code that uses it. An alternative would be to
use CMake to check for the symbol (I personally haven't used this before
so I don't know if there are any quirks).
Differential Revision: https://reviews.llvm.org/D104020