Some people want to experiment with building i686 CloudABI binaries. I
am not entirely sure this is a good idea, as I'd rather see Intel x32
support appear.
As it only requires a two-line change, let's at least provide compiler
to ease experimenting.
llvm-svn: 239689
Summary:
The goal of this patch is to make `-verify` easier to use when testing libc++. The `notes` attached to compile error diagnostics are numerous and relatively unstable when they reference libc++ header internals. This patch allows libc++ to write stable compilation failure tests by allowing unexpected diagnostic messages to be ignored where they are not relevant.
This patch adds a new CC1 flag called `-verify-ignore-unexpected`. `-verify-ignore-unexpected` tells `VerifyDiagnosticsConsumer` to ignore *all* unexpected diagnostic messages. `-verify-ignore-unexpected=<LevelList>` can be used to only ignore certain diagnostic levels. `<LevelList>` is a comma separated list of diagnostic levels to ignore. The supported levels are `note`, `remark`, `warning` and `error`.
Reviewers: bogner, grosser, EricWF
Reviewed By: EricWF
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D10138
llvm-svn: 239665
GCC mangles long double like __float128 in order to support
compatibility with ABI variants which had a different interpretation of
long double.
This fixes PR23791.
llvm-svn: 239421
Summary:
This patch enables lexing of `concept` and `requires` as keywords.
Further changes which add messages for future keyword compat are to
follow.
Test Plan:
Testing of C++14 + Concepts TS mode is added to
`test/Lexer/keywords_test.cpp`, which expects that the new keywords are
enabled under said mode.
Reviewers: faisalv, fraggamuffin, rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D10233
llvm-svn: 239128
They should be 'int' instead of 'long int' everywhere else except
NetBSD too, from what I gather in GCC's spec files. So, optimistically
changing it for everyone else, too.
llvm-svn: 239046
If the type isn't trivially moveable emplace can skip a potentially
expensive move. It also saves a couple of characters.
Call sites were found with the ASTMatcher + some semi-automated cleanup.
memberCallExpr(
argumentCountIs(1), callee(methodDecl(hasName("push_back"))),
on(hasType(recordDecl(has(namedDecl(hasName("emplace_back")))))),
hasArgument(0, bindTemporaryExpr(
hasType(recordDecl(hasNonTrivialDestructor())),
has(constructExpr()))),
unless(isInTemplateInstantiation()))
No functional change intended.
llvm-svn: 238601
Cygwin (and MinGW) targets define __declspec to __attribute__ unless
-fms-extensions is specified. It turns out that cygwin headers rely on
the existence of this macro.
llvm-svn: 238394
Avoiding ugly combination of string parsing in the front-end. We still
need to move away from CPU parsing at all, but that's for a different
commit.
llvm-svn: 238318
Note: __declspec is also temporarily enabled when compiling for a CUDA target because there are implementation details relying on __declspec(property) support currently. When those details change, __declspec should be disabled for CUDA targets.
llvm-svn: 238238
This patch adds support for the following new instructions in the
Power ISA 2.07:
vpksdss
vpksdus
vpkudus
vpkudum
vupkhsw
vupklsw
These instructions are available through the vec_packs, vec_packsu,
vec_unpackh, and vec_unpackl built-in interfaces. These are
lane-sensitive instructions, so the built-ins have different
implementations for big- and little-endian, and the instructions must
be marked as killing the vector swap optimization for now.
The first three instructions perform saturating pack operations. The
fourth performs a modulo pack operation, which means it can be
represented with a vector shuffle, and conversely the appropriate
vector shuffles may cause this instruction to be generated. The other
instructions are only generated via built-in support for now.
I noticed during patch preparation that the macro __VSX__ was not
previously predefined when the power8-vector or direct-move features
are requested. This is an error, and I've corrected that here as
well.
Appropriate tests have been added.
There is a companion patch to llvm for the rest of this support.
llvm-svn: 237500
Follow-up to commit for revision 236848.
Just a test case for the macro definition under the right CPU/Arch.
One combination was actually missed in the initial fix:
- powerpc64-unknown-unknown -mcpu=pwr8 (rather than -mcpu=power8).
llvm-svn: 237386
This, in preparation for the introduction of more new keywords in the
implementation of the C++ language, generalizes the support for future keyword
compat diagnostics (e.g., diag::warn_cxx11_keyword) by extending the
applicability of the relevant property in IdentifierTable with appropriate
renaming.
Patch by Hubert Tong!
llvm-svn: 237332
This patch adds support for the z13 architecture type. For compatibility
with GCC, a pair of options -mvx / -mno-vx can be used to selectively
enable/disable use of the vector facility.
When the vector facility is present, we default to the new vector ABI.
This is characterized by two major differences:
- Vector types are passed/returned in vector registers
(except for unnamed arguments of a variable-argument list function).
- Vector types are at most 8-byte aligned.
The reason for the choice of 8-byte vector alignment is that the hardware
is able to efficiently load vectors at 8-byte alignment, and the ABI only
guarantees 8-byte alignment of the stack pointer, so requiring any higher
alignment for vectors would require dynamic stack re-alignment code.
However, for compatibility with old code that may use vector types, when
*not* using the vector facility, the old alignment rules (vector types
are naturally aligned) remain in use.
These alignment rules are not only implemented at the C language level,
but also at the LLVM IR level. This is done by selecting a different
DataLayout string depending on whether the vector ABI is in effect or not.
Based on a patch by Richard Sandiford.
llvm-svn: 236531
Cyclone actually supports all the goodies you'd expect to come with an AArch64
CPU, so it doesn't need its own clause. Also we should probably be testing
these clauses.
llvm-svn: 236349
It has no place there; it's not a property of the Module, and it makes
restoring the visibility set when we leave a submodule more difficult.
llvm-svn: 236300
by erasing the soft-float target feature if the rest of the front
end added it because of defaults or the soft float option.
Add some testing for some of the targets that implement this hack.
llvm-svn: 236179
This issue was fixed elsewhere in r235396 in a more general way, hence these
changes no longer do anything. Keep the testcase however, to ensure that we
don't regress this for ARM.
llvm-svn: 236104
When creating a global variable with a type of a struct with bitfields, we must
forcibly set the alignment of the global from the RecordDecl. We must do this so
that the proper bitfield alignment makes its way down to LLVM, since clang will
mangle the bitfields into one large type.
llvm-svn: 235976
The GCC construct __attribute__((aligned)) is defined to set alignment
to "the default alignment for the target architecture" according to
the GCC documentation:
The default alignment is sufficient for all scalar types, but may not be
enough for all vector types on a target that supports vector operations.
The default alignment is fixed for a particular target ABI.
clang currently hard-coded an alignment of 16 bytes for that construct,
which is correct on some platforms (including X86), but wrong on others
(including SystemZ). Since this value is ABI-relevant, it is important
to get correct for compatibility purposes.
This patch adds a new TargetInfo member "DefaultAlignForAttributeAligned"
that targets can set to the appropriate default __attribute__((aligned))
value.
Note that I'm deliberately *not* using the existing "SuitableAlign"
value, which is used to set the pre-defined macro __BIGGEST_ALIGNMENT__,
since those two values may not be the same on all platforms. In fact,
on X86, __attribute__((aligned)) always uses 16-byte alignment, while
__BIGGEST_ALIGNMENT__ may be larger if AVX-2 or AVX-512 are supported.
(This is actually not yet correctly implemented in clang either.)
The patch provides a value for DefaultAlignForAttributeAligned only for
SystemZ, and leaves the default for all other targets at 16, which means
no visible change in behavior on all other targets. (The value is still
wrong for some other targets, but I'd prefer to leave it to the target
maintainers for those platforms to fix.)
llvm-svn: 235397
Emits the following code for the clause at the beginning of the outlined function for implicit threads:
if (<not a master thread>) {
...
<thread local copy of var> = <master thread local copy of var>;
...
}
<sync point>;
Checking for a non-master thread is performed by comparing of the address of the thread local variable with the address of the master's variable. Master thread always uses original variables, so you always know the address of the variable in the master thread.
Differential Revision: http://reviews.llvm.org/D9026
llvm-svn: 235075
This patch corresponds to review:
http://reviews.llvm.org/D8930
This just adds a front end option to let the back end know the target has PPC
direct move instructions.
llvm-svn: 234683
This patch corresponds to review:
http://reviews.llvm.org/D8398
It adds some builtin functions to access the extended divide and bit permute instructions.
llvm-svn: 234547