Altivec vector loads on PowerPC have an interesting property: They always load
from an aligned address (by rounding down the address actually provided if
necessary). In order to generate an actual unaligned load, you can generate two
load instructions, one with the original address, one offset by one vector
length, and use a special permutation to extract the bytes desired.
When this was originally implemented, I generated these two loads using regular
ISD::LOAD nodes, now marked as aligned. Unfortunately, there is a problem with
this:
The alignment of a load does not contribute to its identity, and SDNodes
are uniqued. So, imagine that we have some unaligned load, L1, that is not
aligned. The routine will create two loads, L1(aligned) and (L1+16)(aligned).
Further imagine that there had already existed a load (L1+16)(unaligned) with
the same chain operand as the load L1. When (L1+16)(aligned) is created as part
of the lowering of L1, this load *is* also the (L1+16)(unaligned) node, just
now marked as aligned (because the new alignment overwrites the old). But the
original users of (L1+16)(unaligned) now get the data intended for the
permutation yielding the data for L1, and (L1+16)(unaligned) no longer exists
to get its own permutation-based expansion. This was PR19991.
A second potential problem has to do with the MMOs on these loads, which can be
used by AA during instruction scheduling to break chain-based dependencies. If
the new "aligned" loads get the MMO from the original unaligned load, this does
not represent the fact that it will load data from below the original address.
Normally, this would not matter, but this load might be combined with another
load pair for a previous vector, and then the dependency on the otherwise-
ignored lower bytes can matter.
To fix both problems, instead of generating the necessary loads using regular
ISD::LOAD instructions, ppc_altivec_lvx intrinsics are used instead. These are
provided with MMOs with a conservative address range.
Unfortunately, I no longer have a failing test case (since PR19991 was
reported, other changes in CodeGen have forced this bug back into hiding it
again). Nevertheless, this should fix the underlying problem.
llvm-svn: 214481
they're somehow missing a body. Looks like this was left behind when the loop
was generalized, and it's not been problematic before because without modules,
a used, implicit special member function declaration must be a definition.
This was resulting in us trying to emit a constructor declaration rather than
a definition, and producing a constructor missing its member initializers.
llvm-svn: 214473
this pointer is always non-null. If the this pointer is null, it is undefined
and the compiler may optimize it away by assuming it is non-null. The null
checks are pushed into the callers.
llvm-svn: 214471
ADDS and SUBS cannot encode negative immediates or immediates larger than 12bit.
This fix checks if the immediate version can be used under this constraints and
if we can convert ADDS to SUBS or vice versa to support negative immediates.
Also update the test cases to test the immediate versions.
llvm-svn: 214470
When generating unaligned vector loads, we need to search for other loads or
stores nearby offset by one vector width. If we find one, then we know that we
can safely generate another aligned load at that address. Otherwise, we must
generate the next load using an offset of the vector width minus one byte (so
we don't read off the end of the allocation if the base unaligned address
happened to be aligned at runtime). We had previously done this using only
other vector loads and stores, but did not consider the PowerPC-specific vector
load/store intrinsics. Now we'll also consider vector intrinsics. By itself,
this change is a feature enhancement, but is a necessary step toward fixing the
underlying problem behind PR19991.
llvm-svn: 214469
This improves the diagnostics from the regular assembler, but more
importantly it fixes an assertion when parsing inline assembly. Test
landing in Clang.
llvm-svn: 214468
Abs/neg folding has moved out of foldOperands and into the instruction
selection phase using complex patterns. As a consequence of this
change, we now prefer to select the 64-bit encoding for most
instructions and the modifier operands have been dropped from
integer VOP3 instructions.
llvm-svn: 214467
This is useful for cases when stand-alone patterns are preferred to the
patterns included in the instruction definitions. Instead of requiring
that stand-alone patterns set a larger AddedComplexity value, which
can be confusing to new developers, the allows us to reduce the
complexity of the included patterns to achieve the same result.
There will be test cases for this added to the R600 backend in a
future commit.
llvm-svn: 214466
We were incorrectly assuming that all VOP2 instructions can read SGPRs
in Src0, but this is not true for instructions that read carry-in from
VCC.
The old logic has been replaced with new logic which checks the defined
register classes of the VOP2 instruction to determine whether or not to
legalize the operands.
llvm-svn: 214465
This allows assembling the two new instructions, encls and enclu for the
SKX processor model.
Note the diffs are a bigger than what might think, but to fit the new
MRM_CF and MRM_D7 in things in the right places things had to be
renumbered and shuffled down causing a bit more diffs.
rdar://16228228
llvm-svn: 214460
of a function has a resolved exception specification, then all declarations of
the function do.
We should probably improve the AST representation to make this implicit (perhaps
only store the exception specification on the canonical declaration), but this
fixes things for now.
The testcase for this (which used to assert) also exposes the actual bug I was
trying to reduce here: we sometimes fail to emit the body of an imported
special member function definition. Fix for that to follow.
llvm-svn: 214458
The PE/COFF spec says that SizeOfRawData field in the section
header must be a multiple of FileAlignment from the optional
header. LLD emits 512 as FileAlignment, so it must have been
a multiple of 512.
LLD did not follow that. It emitted the actual section size
without the last padding as the SizeOfRawData. Although it's
not correct as per the spec, the Windows loader doesn't seem
to actually bother to check that. Executables created by LLD
worked fine.
However, tools dealing with executalbe files may expect it
to be the correct value, and one instance of it is mt.exe
tool distributed as a part of Windows SDK.
If CMake is invoked with "-E vs_link_exe" option, it silently
run mt.exe to embed a resource file to the resulting file.
And mt.exe sometimes breaks an input file if it's section
header does not follow the standard. That caused a misterous
error that CMake with Ninja occasionally produces a broken
executable.
This patch fixes the section header to make mt.exe and
other tools happy.
llvm-svn: 214453
If INTRINSIC_W_CHAIN and INTRINSIC_VOID are MemIntrinsicSDNodes, and a
MemIntrinsicSDNode is a MemSDNode, then INTRINSIC_W_CHAIN and INTRINSIC_VOID
must be MemSDNodes too.
Noticed by inspection.
llvm-svn: 214452
FunctionProtoType::ExtProtoInfo. Most of the users of these fields don't care
about the other ExtProtoInfo bits and just want to talk about the exception
specification.
llvm-svn: 214450
Currently when DAGCombine converts loads feeding a switch into a switch of
addresses feeding a load the new load inherits the isInvariant flag of the left
side. This is incorrect since invariant loads can be reordered in cases where it
is illegal to reoarder normal loads.
This patch adds an isInvariant parameter to getExtLoad() and updates all call
sites to pass in the data if they have it or false if they don't. It also
changes the DAGCombine to use that data to make the right decision when
creating the new load.
llvm-svn: 214449
+ Perform the parallelism check on the innermost loop only once.
+ Inline the markOpenmpParallel function.
+ Rename all IslAstUserPayload * into Payload to make it consistent.
llvm-svn: 214448
The current remark is ambiguous and makes it sounds like explicitly specifying vectorization will allow the loop to be vectorized. This is not the case. The improved remark directs the user to -Rpass-analysis=loop-vectorize to determine the cause of the pass-miss.
Reviewed by Arnold Schwaighofer`
llvm-svn: 214445
Previously, CMake was invoking the test runner and not specifying
what architecture to use when building test executables. The
Makefiles for the test executables then had logic to choose x64
by default. This doesn't work on Windows because the test compiler
would then try to link against the 64-bit MSVCRT and not find them
since only the 32-bit MSVCRT was in the path.
This patch addresses this by figuring out, at CMake time, whether
or not you are building LLDB with a 64 or 32-bit toolchain. Then,
it explicitly passes this value to the test runner, causing the
test runner to build tests whose architecture matches that of LLDB
itself. This can still be overridden by setting the CMake variable
LLDB_TEST_EXECUTABLE_ARCH=(x64|x86)
llvm-svn: 214443
This patch is necessary to support constant expressions which replaces the integer value in the loop hint attribute with an expression. The integer value was also storing the pragma’s state for options like vectorize(enable/disable) and the pragma unroll and nounroll directive. The state variable is introduced to hold the state of those options/pragmas. This moves the validation of the state (keywords) from SemaStmtAttr handler to the loop hint annotation token handler.
Resubmit with changes to try to fix the build-bot issue.
Reviewed by Aaron Ballman
llvm-svn: 214432