Summary:
During legalization if i16, do not ASSERTZEXT the result of FP_TO_FP16.
Directly return an FP_TO_FP16 node with return type as the
promote-to-type of i16.
This patch also removes extraneous length check. This legalization
should be valid even if integer and float types are of different
lengths.
This patch breaks a hard-float test for fp16 args. The test is changed
to allow a vmov to zero-out the top bits, and also ensure that the
return value is in an FP register.
Reviewers: ab, jmolloy
Subscribers: srhines, llvm-commits
Differential Revision: http://reviews.llvm.org/D15438
llvm-svn: 257184
Unlike my comment in 257022 said, it turns out we do handle constant vectors in the statepoint lowering, but only because SelectionDAG doesn't actually produce constants for them. Add a couple of tests which show this working.
Also, add a triple to the same test file to hopefully fix a failing bot.
It turns out we do han
llvm-svn: 257025
Currently, we try to split vectors of pointers back into their component pointer elements during rewrite-statepoints-for-gc. This is less than ideal since presumably the vectorizer chose to vectorize for a reason. :) It's also been a source of bugs - in particular, the relocation logic as currently implemented was recently discovered to be wrong.
The alternate approach is to allow gc.relocates of vector-of-pointer type and update the backend to handle them. That's what this patch tries to do. This won't actually enable vector-of-pointers in practice - there are some RS4GC changes needed - but the lowering is standalone and testable so it makes sense to separate.
Note that there are some known cases around vector constants which this patch does not handle. Once this is in, I'll send another patch with individual fixes and test cases.
Differential Revision: http://reviews.llvm.org/D15632
llvm-svn: 257022
The functionality that calculateCatchReturnSuccessorColors provides was
once non-trivial: it was a computation layered on top of funclet
coloring.
These days, LLVM IR directly encodes what
calculateCatchReturnSuccessorColors computed, obsoleting the need for
it.
No functionality change is intended.
llvm-svn: 256965
In an inbounds getelementptr, when an index produces a constant non-negative
offset to add to the base, the add can be assumed to not have unsigned overflow.
This relies on the assumption that addresses can't occupy more than half the
address space, which isn't possible in C because it wouldn't be possible to
represent the difference between the start of the object and one-past-the-end
in a ptrdiff_t.
Setting the NoUnsignedWrap flag is theoretically useful in general, and is
specifically useful to the WebAssembly backend, since it permits stronger
constant offset folding.
Differential Revision: http://reviews.llvm.org/D15544
llvm-svn: 256890
Summary:
This commit renames GCRelocateOperands to GCRelocateInst and makes it an
intrinsic wrapper, similar to e.g. MemCpyInst. Also, all users of
GCRelocateOperands were changed to use the new intrinsic wrapper instead.
Reviewers: sanjoy, reames
Subscribers: reames, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D15762
llvm-svn: 256811
We need a frame pointer if there is a push/pop sequence after the
prologue in order to unwind the stack. Scanning the instructions to
figure out if this happened made hasFP not constant-time which is a
violation of expectations. Let's compute this up-front and reuse that
computation when we need it.
llvm-svn: 256730
Pulled out the similar CONCAT_VECTORS creation code from the 2/3 operand getNode() calls (to handle all UNDEF and all BUILD_VECTOR cases). Added a similar handler to the general getNode() call as well.
llvm-svn: 256709
This adds support for the MCU psABI in a way different from r251223 and r251224,
basically reverting most of these two patches. The problem with the approach
taken in r251223/4 is that it only handled libcalls that originated from the backend.
However, the mid-end also inserts quite a few libcalls and assumes these use the
platform's default calling convention.
The previous patch tried to insert inregs when necessary both in the FE and,
somewhat hackily, in the CG. Instead, we now define a new default calling convention
for the MCU, which doesn't use inreg marking at all, similarly to what x86-64 does.
Differential Revision: http://reviews.llvm.org/D15054
llvm-svn: 256494
Teach the statepoint lowering code to emit Indirect stackmap entries for spill inserted by StatepointLowering (i.e. SelectionDAG), but Direct stackmap entries for in-IR allocas which represent manual stack slots. This is what the docs call for (http://llvm.org/docs/StackMaps.html#stack-map-format), but we've been emitting both as Direct. This was pointed out recently on the mailing list as a bug. It also blocks http://reviews.llvm.org/D15632 which extends the lowering to handle vector-of-pointers since only Indirect references can encode a variable sized slot.
To implement this, I introduced a new flag on the StackObject class used to maintian information about stack slots. I original considered (and prototyped in http://reviews.llvm.org/D15632), the idea of using the existing isSpillSlot flag, but end up deciding that was a bit too risky and that the cost of adding a new flag was low. Having the new flag will also allow us - in the future - to emit better comments in verbose assembly which indicate where a particular stack spill around a call comes from. (deopt, gc, regalloc).
Differential Revision: http://reviews.llvm.org/D15759
llvm-svn: 256352
Reasons:
1) The existing form was a form of false generality. None of the implemented GCStrategies use anything other than a type. Its becoming more and more clear we're going to need some type of strong GC pointer in the type system and we shouldn't pretend otherwise at this point.
2) The API was awkward when applied to vectors-of-pointers. The old one could have been made to work, but calling isGCManagedPointer(Ty->getScalarType()) is much cleaner than the Value alternatives.
3) The rewriting implementation effectively assumes the type based predicate as well. We should be consistent.
llvm-svn: 256312
Summary:
These were deprecated 11 months ago when a generic
llvm.experimental.gc.result intrinsic, which works for all types, was added.
Reviewers: sanjoy, reames
Subscribers: sanjoy, chenli, llvm-commits
Differential Revision: http://reviews.llvm.org/D15719
llvm-svn: 256262
Summary:
First up is instcombine, where in the dbg.declare -> dbg.value conversion,
the llvm.dbg.value needs to be called on the actual loaded value, rather
than the address (since the whole point of this transformation is to be
able to get rid of the alloca). Further, now that that's cleaned up, we
can remove a hack in the backend, that would add an implicit OP_deref if
the argument to dbg.value was an alloca. This stems from before the
existence of DIExpression and is no longer necessary since the deref can
be expressed explicitly.
Now, in order to make sure that the tests pass with this change, we need to
correct the printing of DEBUG_VALUE comments to take into account the
expression, which wasn't taken into account before.
Unfortunately, for both these changes, there were a number of incorrect
test cases (mostly the wrong number of DW_OP_derefs, but also a couple
where the test itself was broken more badly). aprantl and I have gone
through and adjusted these test case in order to make them pass with
these fixes and in some cases to make sure they're actually testing
what they are meant to test.
Reviewers: aprantl
Subscribers: dsanders
Differential Revision: http://reviews.llvm.org/D14186
llvm-svn: 256077
Update supportSplitCSR's interface to take machine function instead of the
calling convention.
Review comments for http://reviews.llvm.org/D15341
llvm-svn: 255818
Summary: This patch adds a check in visitLandingPad to see if landingpad's result type is token type. If so, do not create DAG nodes for its exception pointer and selector value. This patch enables the back end to handle landingpads of token type.
Reviewers: JosephTremoulet, majnemer, rnk
Subscribers: sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D15405
llvm-svn: 255749
It appears that neither compiler-rt nor the gnu soft-float libraries actually
implement these conversions. Instead of emitting calls to library functions
that don't exist, handle it similarly to the way we handle i8 -> float and
i16 -> float conversions: call the i32 library function, and adjust the type.
Differential Revision: http://reviews.llvm.org/D15151
llvm-svn: 255643
Full type legalizer that works with all vectors length - from 2 to 16, (i32, i64, float, double).
This intrinsic, for example
void @llvm.masked.scatter.v2f32(<2 x float>%data , <2 x float*>%ptrs , i32 align , <2 x i1>%mask )
requires type widening for data and type promotion for mask.
Differential Revision: http://reviews.llvm.org/D13633
llvm-svn: 255629
Part 1 was submitted in http://reviews.llvm.org/D15134.
Changes in this part:
* X86RegisterInfo.td, X86RecognizableInstr.cpp: Add FR128 register class.
* X86CallingConv.td: Pass f128 values in XMM registers or on stack.
* X86InstrCompiler.td, X86InstrInfo.td, X86InstrSSE.td:
Add instruction selection patterns for f128.
* X86ISelLowering.cpp:
When target has MMX registers, configure MVT::f128 in FR128RegClass,
with TypeSoftenFloat action, and custom actions for some opcodes.
Add missed cases of MVT::f128 in places that handle f32, f64, or vector types.
Add TODO comment to support f128 type in inline assembly code.
* SelectionDAGBuilder.cpp:
Fix infinite loop when f128 type can have
VT == TLI.getTypeToTransformTo(Ctx, VT).
* Add unit tests for x86-64 fp128 type.
Differential Revision: http://reviews.llvm.org/D11438
llvm-svn: 255558
It turns out that terminatepad gives little benefit over a cleanuppad
which calls the termination function. This is not sufficient to
implement fully generic filters but MSVC doesn't support them which
makes terminatepad a little over-designed.
Depends on D15478.
Differential Revision: http://reviews.llvm.org/D15479
llvm-svn: 255522
When FastISel fails to translate an instruction it hands off code
generation to SelectionDAG. Before it does so, it may have generated
local value instructions to feed phi nodes in successor blocks. These
instructions will then be generated again by SelectionDAG, causing
duplication and less efficient code, including extra spill
instructions.
Patch by Wolfgang Pieb!
Differential Revision: http://reviews.llvm.org/D11768
llvm-svn: 255520
This patch adds some missing calls to MBB::normalizeSuccProbs() in several
locations where it should be called. Those places are found by checking if the
sum of successors' probabilities is approximate one in MachineBlockPlacement
pass with some instrumented code (not in this patch).
Differential revision: http://reviews.llvm.org/D15259
llvm-svn: 255455
Summary:
Previously SelectionDAGBuilder asserted that the pointer operands of
memcpy / memset / memmove intrinsics are in address space < 256. This assert
implicitly assumed the X86 backend, where all address spaces < 256 are
equivalent to address space 0 from the code generator's point of view. On some
targets (R600 and NVPTX) several address spaces < 256 have a target-defined
meaning, so this assert made little sense for these targets.
This patch removes this wrong assertion and adds extra checks before lowering
these intrinsics to library calls. If a pointer operand can't be casted to
address space 0 without changing semantics, a fatal error is reported to the
user.
The new behavior should be valid for all targets that give address spaces != 0
a target-specified meaning (NVPTX, R600, X86). NVPTX lowers big or
variable-sized memory intrinsics before SelectionDAG construction. All other
memory intrinsics are inlined (the threshold is set very high for this target).
R600 doesn't support memcpy / memset / memmove library calls (previously the
illegal emission of a call to such library function triggered an error
somewhere in the code generator). X86 now emits inline loads and stores for
address spaces 256 and 257 up to the same threshold that is used for address
space 0 and reports a fatal error otherwise.
I call this a "partial fix" because there are still cases that can't be
lowered. A fatal error is reported in these cases.
Reviewers: arsenm, theraven, compnerd, hfinkel
Subscribers: hfinkel, llvm-commits, alex
Differential Revision: http://reviews.llvm.org/D7241
llvm-svn: 255441
While we have successfully implemented a funclet-oriented EH scheme on
top of LLVM IR, our scheme has some notable deficiencies:
- catchendpad and cleanupendpad are necessary in the current design
but they are difficult to explain to others, even to seasoned LLVM
experts.
- catchendpad and cleanupendpad are optimization barriers. They cannot
be split and force all potentially throwing call-sites to be invokes.
This has a noticable effect on the quality of our code generation.
- catchpad, while similar in some aspects to invoke, is fairly awkward.
It is unsplittable, starts a funclet, and has control flow to other
funclets.
- The nesting relationship between funclets is currently a property of
control flow edges. Because of this, we are forced to carefully
analyze the flow graph to see if there might potentially exist illegal
nesting among funclets. While we have logic to clone funclets when
they are illegally nested, it would be nicer if we had a
representation which forbade them upfront.
Let's clean this up a bit by doing the following:
- Instead, make catchpad more like cleanuppad and landingpad: no control
flow, just a bunch of simple operands; catchpad would be splittable.
- Introduce catchswitch, a control flow instruction designed to model
the constraints of funclet oriented EH.
- Make funclet scoping explicit by having funclet instructions consume
the token produced by the funclet which contains them.
- Remove catchendpad and cleanupendpad. Their presence can be inferred
implicitly using coloring information.
N.B. The state numbering code for the CLR has been updated but the
veracity of it's output cannot be spoken for. An expert should take a
look to make sure the results are reasonable.
Reviewers: rnk, JosephTremoulet, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D15139
llvm-svn: 255422
After much discussion, ending here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151123/315620.html
it has been decided that, instead of having the vectorizer directly generate
special absdiff and horizontal-add intrinsics, we'll recognize the relevant
reduction patterns during CodeGen. Accordingly, these intrinsics are not needed
(the operations they represent can be pattern matched, as is already done in
some backends). Thus, we're backing these out in favor of the current
development work.
r248483 - Codegen: Fix llvm.*absdiff semantic.
r242546 - [ARM] Use [SU]ABSDIFF nodes instead of intrinsics for VABD/VABA
r242545 - [AArch64] Use [SU]ABSDIFF nodes instead of intrinsics for ABD/ABA
r242409 - [Codegen] Add intrinsics 'absdiff' and corresponding SDNodes for absolute difference operation
llvm-svn: 255387
The access function has a short entry and a short exit, the initialization
block is only run the first time. To improve the performance, we want to
have a short frame at the entry and exit.
We explicitly handle most of the CSRs via copies. Only the CSRs that are not
handled via copies will be in CSR_SaveList.
Frame lowering and prologue/epilogue insertion will generate a short frame
in the entry and exit according to CSR_SaveList. The majority of the CSRs will
be handled by register allcoator. Register allocator will try to spill and
reload them in the initialization block.
We add CSRsViaCopy, it will be explicitly handled during lowering.
1> we first set FunctionLoweringInfo->SplitCSR if conditions are met (the target
supports it for the given calling convention and the function has only return
exits). We also call TLI->initializeSplitCSR to perform initialization.
2> we call TLI->insertCopiesSplitCSR to insert copies from CSRsViaCopy to
virtual registers at beginning of the entry block and copies from virtual
registers to CSRsViaCopy at beginning of the exit blocks.
3> we also need to make sure the explicit copies will not be eliminated.
rdar://problem/23557469
Differential Revision: http://reviews.llvm.org/D15340
llvm-svn: 255353
PR25763 demonstrated an issue with D14683 - vector comparison constant folding only works for i1 results, so we need to split off the sign-extension of the result to the required type. Luckily this can be done with the existing type legalization code.
llvm-svn: 255289
During selection DAG legalization, extractelement is replaced with a load
instruction. To do this, a temporary store to the stack is used unless an
existing store is found that can be re-used.
If re-using a store, the chain going out of the store must be replaced by
the one going out of the new load (this ensures that any stores that must
take place after the store happens after the load, else the value might
be overwritten before it is loaded).
The problem is, if the extractelement index is dependent on the store
replacing the chain will introduce a cycle in the selection DAG (the load
uses the index, and by replacing the chain we will make the index dependent
on the load).
To fix this, if the index is dependent on the store, the store is skipped.
This is conservative as we may end up creating an unnecessary extra store
to the stack. However, the situation is not expected to occur very often.
Differential Revision: http://reviews.llvm.org/D15330
llvm-svn: 255114
Patterns were missing for KNL target for <8 x i32>, <8 x float> masked load/store.
This intrinsic comes with all legal types:
<8 x float> @llvm.masked.load.v8f32(<8 x float>* %addr, i32 align, <8 x i1> %mask, <8 x float> %passThru),
but still requires lowering, because VMASKMOVPS, VMASKMOVDQU32 work with 512-bit vectors only.
All data operands should be widened to 512-bit vector.
The mask operand should be widened to v16i1 with zeroes.
Differential Revision: http://reviews.llvm.org/D15265
llvm-svn: 254909
This is a revised version of r254655 which uses a Printable wrapper
class to avoid ambiguous overload problems.
Differential Revision: http://reviews.llvm.org/D14348
llvm-svn: 254681