When enabled, clang generates bounds checks for array and pointers dereferences. Work to follow in LLVM's backend.
OK'ed by Chad; thanks for the review.
llvm-svn: 156431
remove the comparison of objectsize with -1. since it's an unsigned comparison, it will always succeed if objectsize returns -1, which is enough to have the check removed
llvm-svn: 156311
and only consider using __cxa_atexit in the Itanium logic. The
default logic is to use atexit().
Emit "guarded" initializers in Microsoft mode unconditionally.
This is definitely not correct, but it's closer to correct than
just not emitting the initializer.
Based on a patch by Timur Iskhodzhanov!
llvm-svn: 155894
thinking of generalizing it to be able to specify other freedoms beyond accuracy
(such as that NaN's don't have to be respected). I'd like the 3.1 release (the
first one with this metadata) to have the more generic name already rather than
having to auto-upgrade it in 3.2.
llvm-svn: 154745
__atomic_test_and_set, __atomic_clear, plus a pile of undocumented __GCC_*
predefined macros.
Implement library fallback for __atomic_is_lock_free and
__c11_atomic_is_lock_free, and implement __atomic_always_lock_free.
Contrary to their documentation, GCC's __atomic_fetch_add family don't
multiply the operand by sizeof(T) when operating on a pointer type.
libstdc++ relies on this quirk. Remove this handling for all but the
__c11_atomic_fetch_add and __c11_atomic_fetch_sub builtins.
Contrary to their documentation, __atomic_test_and_set and __atomic_clear
take a first argument of type 'volatile void *', not 'void *' or 'bool *',
and __atomic_is_lock_free and __atomic_always_lock_free have an argument
of type 'const volatile void *', not 'void *'.
With this change, libstdc++4.7's <atomic> passes libc++'s atomic test suite,
except for a couple of libstdc++ bugs and some cases where libc++'s test
suite tests for properties which implementations have latitude to vary.
llvm-svn: 154640
in general (such an atomic has boolean representation) and
specifically for IR generation of __c11_atomic_init. The latter also
means actually using initialization semantics for this initialization,
rather than just creating a store.
On a related note, make sure we actually put in non-atomic-to-atomic
conversions when performing an implicit conversion sequence. IR
generation is far too kind here, but we still want the ASTs to make
sense.
llvm-svn: 154612
This is not quite sufficient for libstdc++'s <atomic>: we still need
__atomic_test_and_set and __atomic_clear, and may need a more complete
__atomic_is_lock_free implementation.
We are also missing an implementation of __atomic_always_lock_free,
__atomic_nand_fetch, and __atomic_fetch_nand, but those aren't needed
for libstdc++.
llvm-svn: 154579
LLVM intrinsics for.
I have an implementation of these functions, which wants to go in a libgcc_s
equivalent in compiler-rt. It's currently here:
http://people.freebsd.org/~theraven/atomic.c
It will be committed to compiler-rt as soon as I work out where would be a
sensible place to put it...
llvm-svn: 153666
flag as GCC uses: -fstrict-enums). There is a *lot* of code making
unwarranted assumptions about the underlying type of enums, and it
doesn't seem entirely reasonable to eagerly break all of it.
Much more importantly, the current state of affairs is *very* good at
optimizing based upon this information, which causes failures that are
very distant from the actual enum. Before we push for enabling this by
default, I think we need to implement -fcatch-undefined-behavior support
for instrumenting and trapping whenever we store or load a value outside
of the range. That way we can track down the misbehaving code very
quickly.
I discussed this with Rafael, and currently the only important cases he
is aware of are the bool range-based optimizations which are staying
hard enabled. We've not seen any issue with those either, and they are
much more important for performance.
llvm-svn: 153550
For i686 targets (eg. cygwin), I saw "Range must not be empty!" in verifier.
It produces (i32)[0x80000000:0x80000000) from (uint64_t)[0xFFFFFFFF80000000ULL:0x0000000080000000ULL), for signed i32 on MDNode::Range.
llvm-svn: 153382
track whether the referenced declaration comes from an enclosing
local context. I'm amenable to suggestions about the exact meaning
of this bit.
llvm-svn: 152491
we correctly emit loads of BlockDeclRefExprs even when they
don't qualify as ODR-uses. I think I'm adequately convinced
that BlockDeclRefExpr can die.
llvm-svn: 152479
analysis to make the AST representation testable. They are represented by a
new UserDefinedLiteral AST node, which is a sugared CallExpr. All semantic
properties, including full CodeGen support, are achieved for free by this
representation.
UserDefinedLiterals can never be dependent, so no custom instantiation
behavior is required. They are mangled as if they were direct calls to the
underlying literal operator. This matches g++'s apparent behavior (but not its
actual mangling, which is broken for literal-operator-ids).
User-defined *string* literals are now fully-operational, but the semantic
analysis is quite hacky and needs more work. No other forms of user-defined
literal are created yet, but the AST support for them is present.
This patch committed after midnight because we had already hit the quota for
new kinds of literal yesterday.
llvm-svn: 152211
block pointer that returns a block literal which captures (by copy)
the lambda closure itself. Some aspects of the block literal are left
unspecified, namely the capture variable (which doesn't actually
exist) and the body (which will be filled in by IRgen because it can't
be written as an AST).
Because we're switching to this model, this patch also eliminates
tracking the copy-initialization expression for the block capture of
the conversion function, since that information is now embedded in the
synthesized block literal. -1 side tables FTW.
llvm-svn: 151131
optional argument passed through the variadic ellipsis)
potentially affects how we need to lower it. Propagate
this information down to the various getFunctionInfo(...)
overloads on CodeGenTypes. Furthermore, rename those
overloads to clarify their distinct purposes, and make
sure we're calling the right one in the right place.
This has a nice side-effect of making it easier to construct
a function type, since the 'variadic' bit is no longer
separable.
This shouldn't really change anything for our existing
platforms, with one minor exception --- we should now call
variadic ObjC methods with the ... in the "right place"
(see the test case), which I guess matters for anyone
running GNUStep on MIPS. Mostly it's just a substantial
clean-up.
llvm-svn: 150788
is general goodness because representations of member pointers are
not always equivalent across member pointer types on all ABIs
(even though this isn't really standard-endorsed).
Take advantage of the new information to teach IR-generation how
to do these reinterprets in constant initializers. Make sure this
works when intermingled with hierarchy conversions (although
this is not part of our motivating use case). Doing this in the
constant-evaluator would probably have been better, but that would
require a *lot* of extra structure in the representation of
constant member pointers: you'd really have to track an arbitrary
chain of hierarchy conversions and reinterpretations in order to
get this right. Ultimately, this seems less complex. I also
wasn't quite sure how to extend the constant evaluator to handle
foldings that we don't actually want to treat as extended
constant expressions.
llvm-svn: 150551
"use the new ConstantVector::getSplat method where it makes sense."
Also simplify a bunch of code to use the Builder->getInt32 instead
of doing it the hard and ugly way. Much more progress could be made
here, but I don't plan to do it.
llvm-svn: 148926
- Add atomic-to/from-nonatomic cast types
- Emit atomic operations for arithmetic on atomic types
- Emit non-atomic stores for initialisation of atomic types, but atomic stores and loads for every other store / load
- Add a __atomic_init() intrinsic which does a non-atomic store to an _Atomic() type. This is needed for the corresponding C11 stdatomic.h function.
- Enables the relevant __has_feature() checks. The feature isn't 100% complete yet, but it's done enough that we want people testing it.
Still to do:
- Make the arithmetic operations on atomic types (e.g. Atomic(int) foo = 1; foo++;) use the correct LLVM intrinsic if one exists, not a loop with a cmpxchg.
- Add a signal fence builtin
- Properly set the fenv state in atomic operations on floating point values
- Correctly handle things like _Atomic(_Complex double) which are too large for an atomic cmpxchg on some platforms (this requires working out what 'correctly' means in this context)
- Fix the many remaining corner cases
llvm-svn: 148242