This is a minor improvement in the ELFv2 ABI. In ELFv1, DWARF CFI
would represent a saved CR word (holding CR fields CR2, CR3, and CR4)
using just a single CFI record refering to CR2. In ELFv2 instead,
each of the CR fields is represented by its own CFI record. The
advantage is that the compiler can now chose to save just a single
(or two) CR fields instead of all of them, if those are the only ones
that actually need saving. That can lead to more efficient code using
mf(o)crf instead of the (slow) mfcr instruction.
Note that this patch does not (yet) implement this more efficient
code generation, but it does implement the part that is required to
be ABI compliant: creating multiple CFI records if multiple CR fields
are saved.
Reviewed by Hal Finkel.
llvm-svn: 213492
The ELFv2 ABI reduces the amount of stack required to implement an
ABI-compliant function call in two ways:
* the "linkage area" is reduced from 48 bytes to 32 bytes by
eliminating two unused doublewords
* the 64-byte "parameter save area" is now optional and need not be
present in certain cases (it remains mandatory in functions with
variable arguments, and functions that have any parameter that is
passed on the stack)
The following patch implements this required changes:
- reducing the linkage area, and associated relocation of the TOC save
slot, in getLinkageSize / getTOCSaveOffset (this requires updating all
callers of these routines to pass in the isELFv2ABI flag).
- (partially) handling the case where the parameter save are is optional
This latter part requires some extra explanation: Currently, we still
always allocate the parameter save area when *calling* a function.
That is certainly always compliant with the ABI, but may cause code to
allocate stack unnecessarily. This can be addressed by a follow-on
optimization patch.
On the *callee* side, in LowerFormalArguments, we *must* track
correctly whether the ABI guarantees that the caller has allocated
the parameter save area for our use, and the patch does so. However,
there is one complication: the code that handles incoming "byval"
arguments will currently *always* write to the parameter save area,
because it has to force incoming register arguments to the stack since
it must return an *address* to implement the byval semantics.
To fix this, the patch changes the LowerFormalArguments code to write
arguments to a freshly allocated stack slot on the function's own stack
frame instead of the argument save area in those cases where that area
is not present.
Reviewed by Hal Finkel.
llvm-svn: 213490
This adds initial support for PPC32 ELF PIC (Position Independent Code; the
-fPIC variety), thus rectifying a long-standing deficiency in the PowerPC
backend.
Patch by Justin Hibbits!
llvm-svn: 213427
As of r211495, the only remaining users of getMinCallFrameSize are in
core ABI code (LowerFormalParameter / LowerCall). This is actually a
good thing, since the details of the parameter save area are ABI specific.
With the new ELFv2 ABI in particular, the rules defining the size of the
save area will become significantly more complex, so it wouldn't make
sense to implement those outside ABI code that has all required
information.
In preparation, this patch eliminates the getMinCallFrameSize (and
associated getMinCallArgumentsSize) routines, and inlines them into all
callers. Note that since nearly all call arguments are constant, this
allows simplifying the inlined copies to a single line everywhere.
No change in generate code expected.
llvm-svn: 211497
The PPCFrameLowering::determineFrameLayout routine currently ensures
that every function that allocates a stack frame provides space for the
parameter save area (via PPCFrameLowering::getMinCallFrameSize).
This is actually not necessary. There may be functions that never call
another routine but still allocate a frame; those do not require the
parameter save area. In the future, with the ELFv2 ABI, even some
routines that do call other functions do not need to allocate the
parameter save area.
While it is not a bug to allocate the parameter area when it is not
needed, it is better to avoid it to save stack space.
Note that when any particular function call requires the parameter save
area, this space will already have been included by ABI code in the size
the CALLSEQ_START insn is annotated with, and therefore included in the
size returned by MFI->getMaxCallFrameSize().
This means that determineFrameLayout simply does not need to care about
the parameter save area. (It still needs to ensure that every frame
provides the linkage area.) This is implemented by this patch.
Note that this exposed a bug in the new fast-isel code where the parameter
area was *not* included in the CALLSEQ_START size; this is also fixed.
A couple of test cases needed to be adapted for the new (smaller) stack
frame size those tests now see.
llvm-svn: 211495
the initializeSubtargetDependencies code to obtain an initialized
subtarget and migrate a couple of subtarget using functions to the
.cpp file to avoid circular includes.
llvm-svn: 210822
The old system was fairly convoluted:
* A temporary label was created.
* A single PROLOG_LABEL was created with it.
* A few MCCFIInstructions were created with the same label.
The semantics were that the cfi instructions were mapped to the PROLOG_LABEL
via the temporary label. The output position was that of the PROLOG_LABEL.
The temporary label itself was used only for doing the mapping.
The new CFI_INSTRUCTION has a 1:1 mapping to MCCFIInstructions and points to
one by holding an index into the CFI instructions of this function.
I did consider removing MMI.getFrameInstructions completelly and having
CFI_INSTRUCTION own a MCCFIInstruction, but MCCFIInstructions have non
trivial constructors and destructors and are somewhat big, so the this setup
is probably better.
The net result is that we don't create temporary labels that are never used.
llvm-svn: 203204
(Patch committed on behalf of Mark Minich, whose log entry follows.)
This is a continuation of the refactorings performed in svn rev 188573
(see that rev's comments for more detail).
This is my stage 2 refactoring: I combined the emitPrologue() &
emitEpilogue() PPC32 & PPC64 code into a single flow, simplifying a
lot of the code since in essence the PPC32 & PPC64 code generation
logic is the same, only the instruction forms are different (in most
cases). This simplification is necessary because my functional changes
(yet to come) add significant complexity, and without the
simplification of my stage 2 refactoring, the overall complexity of
both emitPrologue() & emitEpilogue() would have become almost
intractable for most mortal programmers (like me).
This submission was intended to be a pure refactoring (no functional
changes whatsoever). However, in the process of combining the PPC32 &
PPC64 flows, I spotted a difference that I believe is a bug (see svn
rev 186478 line 863, or svn rev 188573 line 888): This line appears to
be restoring the BP with the original FP content, not the original BP
content. When I merged the 32-bit and 64-bit code, I used the
corresponding code from the 64-bit flow, which I believe uses the
correct offset (BPOffset) for this operation.
llvm-svn: 188741
safe on PPC32 SVR4 ABI
[Patch and following text by Mark Minich; committing on his behalf.]
There are FIXME's in PowerPC/PPCFrameLowering.cpp, method
PPCFrameLowering::emitPrologue() related to "negative offsets of R1"
on PPC32 SVR4. They're true, but the real issue is that on PPC32 SVR4
(and any ABI without a Red Zone), no spills may be made until after
the stackframe is claimed, which also includes the LR spill which is
at a positive offset. The same problem exists in emitEpilogue(),
though there's no FIXME for it. I intend to fix this issue, making
LLVM-compiled code finally safe for use on SVR4/EABI/e500 32-bit
platforms (including in particular, OS-free embedded systems & kernel
code, where interrupts may share the same stack as user code).
In preparation for making these changes, to make the diffs for the
functional changes less cluttered, I am providing the non-functional
refactorings in two stages:
Stage 1 does some minor fluffy refactorings to pull multiple method
calls up into a single bool, creating named bools for repeated uses of
obscure logic, moving some code up earlier because either stage 2 or
my final version will require it earlier, and rewording/adding some
comments. My stage 1 changes can be characterized as primarily fluffy
cleanup, the purpose of which may be unclear until the stage 2 or
final changes are made.
My stage 2 refactorings combine the separate PPC32 & PPC64 logic,
which is currently performed by largely duplicate code, into a single
flow, with the differences handled by a group of constants initialized
early in the methods.
This submission is for my stage 1 changes. There should be no
functional changes whatsoever; this is a pure refactoring.
llvm-svn: 188573
Support for dynamic stack alignments in the PPC backend has been unfinished, in
part because it depends on dynamic stack realignment (which I only just
recently implemented fully). Now we can also support dynamic allocas with
higher than the default target stack alignment (16 bytes).
In order to round-up the requested size to the maximum requested alignment, we
need an additional register to hold the rounded-up size. We're already using one
scavenged register to hold the previous stack-pointer value (which needs to be
stored with the signal-safe stdux update), and so when we have dynamic allocas
and a large alignment, we allocate two emergency spill slots for the scavenger.
llvm-svn: 186562
First, this changes the base-pointer implementation to remove an unnecessary
complication (and one that is incompatible with how builtin SjLj is
implemented): instead of using r31 as the base pointer when it is not needed as
a frame pointer, now the base pointer will always be r30 when needed.
Second, we introduce another pseudo register, BP, which is used just like the FP
pseudo register to refer to the base register before we know for certain what
register it will be.
Third, we now save BP into the jmp_buf, and restore r30 from that slot in
longjmp. If the function that called setjmp did not use a base pointer, then
r30 will be overwritten by the setjmp-calling-function's restore code. FP
restoration (which is restored into r31) works the same way.
llvm-svn: 186545
This builds on some frame-lowering code that has existed since 2005 (r24224)
but was disabled in 2008 (r48188) because it needed base pointer support to
function correctly. This implementation follows the strategy suggested by Dale
Johannesen in r48188 where the following comment was added:
This does not currently work, because the delta between old and new stack
pointers is added to offsets that reference incoming parameters after the
prolog is generated, and the code that does that doesn't handle a variable
delta. You don't want to do that anyway; a better approach is to reserve
another register that retains to the incoming stack pointer, and reference
parameters relative to that.
And now we do exactly that. If we don't need a frame pointer, then we use r31
as a base pointer. If we do need a frame pointer, then we use r30 as a base
pointer. The base pointer retains the value of the stack pointer before it was
decremented in the prologue. We then use the base pointer to resolve all
negative frame indicies. The basic scheme follows that for base pointers in the
X86 backend.
We use a base pointer when we need to dynamically realign the incoming stack
pointer. This currently applies only to static objects (dynamic allocas with
large alignments, and base-pointer support in SjLj lowering will come in future
commits).
llvm-svn: 186478
Just as with mfocrf, it is also preferable to use mtocrf instead of
mtcrf when only a single CR register is to be written.
Current code however always emits mtcrf. This probably does not matter
when using an external assembler, since the GNU assembler will in fact
automatically replace mtcrf with mtocrf when possible. It does create
inefficient code with the integrated assembler, however.
To fix this, this patch adds MTOCRF/MTOCRF8 instruction patterns and
uses those instead of MTCRF/MTCRF8 everything. Just as done in the
MFOCRF patch committed as 185556, these patterns will be converted
back to MTCRF if MTOCRF is not available on the machine.
As a side effect, this allows to modify the MTCRF pattern to accept
the full range of mask operands for the benefit of the asm parser.
llvm-svn: 185561
This fixes PR16418, which reports that a function calling
__builtin_unwind_init() asserts. The cause is that this generates a
spill/restore for VRSAVE, and we support that only on Darwin (because VRSAVE is
only really used on Darwin).
The test case checks only that we don't crash. We can add correctness checks
once someone verifies what behavior the function is supposed to have.
llvm-svn: 185235
This is the second part of the change to always return "true"
offset values from getPreIndexedAddressParts, tackling the
case of "memrix" type operands.
This is about instructions like LD/STD that only have a 14-bit
field to encode immediate offsets, which are implicitly extended
by two zero bits by the machine, so that in effect we can access
16-bit offsets as long as they are a multiple of 4.
The PowerPC back end currently handles such instructions by
carrying the 14-bit value (as it will get encoded into the
actual machine instructions) in the machine operand fields
for such instructions. This means that those values are
in fact not the true offset, but rather the offset divided
by 4 (and then truncated to an unsigned 14-bit value).
Like in the case fixed in r182012, this makes common code
operations on such offset values not work as expected.
Furthermore, there doesn't really appear to be any strong
reason why we should encode machine operands this way.
This patch therefore changes the encoding of "memrix" type
machine operands to simply contain the "true" offset value
as a signed immediate value, while enforcing the rules that
it must fit in a 16-bit signed value and must also be a
multiple of 4.
This change must be made simultaneously in all places that
access machine operands of this type. However, just about
all those changes make the code simpler; in many cases we
can now just share the same code for memri and memrix
operands.
llvm-svn: 182032
The changes to CR spill handling missed a case for 32-bit PowerPC.
The code in PPCFrameLowering::processFunctionBeforeFrameFinalized()
checks whether CR spill has occurred using a flag in the function
info. This flag is only set by storeRegToStackSlot and
loadRegFromStackSlot. spillCalleeSavedRegisters does not call
storeRegToStackSlot, but instead produces MI directly. Thus we don't
see the CR is spilled when assigning frame offsets, and the CR spill
ends up colliding with some other location (generally the FP slot).
This patch sets the flag in spillCalleeSavedRegisters for PPC32 so
that the CR spill is properly detected and gets its own slot in the
stack frame.
llvm-svn: 181800
This fixes an ABI bug for non-Darwin PPC64. For the callee-saved condition
registers, the spill location is specified relative to the stack pointer (SP +
8). However, this is not relative to the SP after the new stack frame is
established, but instead relative to the caller's stack pointer (it is stored
into the linkage area of the parent's stack frame).
So, like with the link register, we don't directly spill the CRs with other
callee-saved registers, but just mark them to be spilled during prologue
generation.
In practice, this reverts r179457 for PPC64 (but leaves it in place for PPC32).
llvm-svn: 179500
Leaving MFCR has having unmodeled side effects is not enough to prevent
unwanted instruction reordering post-RA. We could probably apply a stronger
barrier attribute, but there is a better way: Add all (not just the first) CR
to be spilled as live-in to the entry block, and add all CRs to the MFCR
instruction as implicitly killed.
Unfortunately, I don't have a small test case.
llvm-svn: 179465
For functions that need to spill CRs, and have dynamic stack allocations, the
value of the SP during the restore is not what it was during the save, and so
we need to use the FP in these cases (as for all of the other spills and
restores, but the CR restore has a special code path because its reserved slot,
like the link register, is specified directly relative to the adjusted SP).
llvm-svn: 179457
There were a few places where kill flags were not being set correctly, and
where 32-bit instruction variants were being used with 64-bit registers. After
r178180, this code was being triggered causing llc to assert.
llvm-svn: 178220
As pointed out by Jakob, we don't need to maintain a separate
register-numbering table. Instead we should let TableGen generate the table for
us from the information (already present) in PPCRegisterInfo.td.
TRI->getEncodingValue is now used to access register-encoding values.
No functionality change intended.
llvm-svn: 178067
Now that the register scavenger can support multiple spill slots, and PEI can
use virtual-register-based scavenging for multiple simultaneous registers, we
can use a virtual register for the transfer register in the CR spilling code.
This should eliminate the last place (outside of the prologue/epilogue) where
we depend on the unconditional availability of the r0 register. We will soon be
able to allocate it (in a somewhat restricted sense) as a GPR.
llvm-svn: 178060
In preparation for using the new register scavenger capability for providing
more than one register simultaneously, specifically note functions that have
spilled VRSAVE (currently, this can happen only in functions that use the
setjmp intrinsic). As with CR spilling, such functions will need to provide two
emergency spill slots to the scavenger.
No functionality change intended.
llvm-svn: 177832
This patch lets the register scavenger make use of multiple spill slots in
order to guarantee that it will be able to provide multiple registers
simultaneously.
To support this, the RS's API has changed slightly: setScavengingFrameIndex /
getScavengingFrameIndex have been replaced by addScavengingFrameIndex /
isScavengingFrameIndex / getScavengingFrameIndices.
In forthcoming commits, the PowerPC backend will use this capability in order
to implement the spilling of condition registers, and some special-purpose
registers, without relying on r0 being reserved. In some cases, spilling these
registers requires two GPRs: one for addressing and one to hold the value being
transferred.
llvm-svn: 177774
The old code used to lower FRAMEADDR tried to replicate the logic in the real
frame-lowering code that determines whether or not the frame pointer (r31) will
be used. When it seemed as through the frame pointer would not be used, the
stack pointer (r1) was used instead. Unfortunately, because the stack size is
not yet known, this does not work. Instead, this change introduces new
always-reserved pseudo-registers (FP and FP8) that are replaced during prologue
insertion with the real frame-pointer register (either r1 or r31).
It is important that this intrinsic always return a valid frame address because
it is used by Clang to store the frame address as part of code generation for
__builtin_setjmp.
llvm-svn: 177653
This change cleans up two issues with Altivec register spilling:
1. The spilling code was inefficient (using two instructions, and add and a
load, when just one would do)
2. The code assumed that r0 would always be available (true for now, but this
will change)
The new code handles VR spilling just like GPR spills but forced into r+r mode.
As a result, when any VR spills are present, we must now always allocate the
register-scavenger spill slot.
llvm-svn: 177231
For spills into a large stack frame, the FI-elimination code uses the register
scavenger to obtain a free GPR for use with an r+r-addressed load or store.
When there are no available GPRs, the scavenger gets one by using its spill
slot. Previously, we were not always allocating that spill slot and the RS
would assert when the spill slot was needed.
I don't currently have a small test that triggered the assert, but I've
created a small regression test that verifies that the spill slot is now
added when the stack frame is sufficiently large.
llvm-svn: 177140
Add the current PEI register scavenger as a parameter to the
processFunctionBeforeFrameFinalized callback.
This change is necessary in order to allow the PowerPC target code to
set the register scavenger frame index after the save-area offset
adjustments performed by processFunctionBeforeFrameFinalized. Only
after these adjustments have been made is it possible to estimate
the size of the stack frame.
llvm-svn: 177108
We used to add a spill slot for the register scavenger whenever the function
has a frame pointer. This is unnecessarily conservative: We may need the spill
slot for dynamic stack allocations, and functions with dynamic stack
allocations always have a FP, but we might also have a FP for other reasons
(such as the user explicitly disabling frame-pointer elimination), and we don't
necessarily need a spill slot for those functions.
The structsinregs test needed adjustment because it disables FP elimination.
llvm-svn: 177106
There's no need to generate a stack frame for PPC32 SVR4 when there are
no local variables assigned to the stack, i.e., when no red zone is needed.
(PPC64 supports a red zone, but PPC32 does not.)
llvm-svn: 176124
This removes a const_cast hack from PPCRegisterInfo::hasReservedSpillSlot().
The proper place to save the frame index for the CR spill slot is in the
PPCFunctionInfo object, not the PPCRegisterInfo object.
No new test cases, as this just reimplements existing function. Existing
tests such as test/CodeGen/PowerPC/crsave.ll are sufficient.
llvm-svn: 175998
to TargetFrameLowering, where it belongs. Incidentally, this allows us
to delete some duplicated (and slightly different!) code in TRI.
There are potentially other layering problems that can be cleaned up
as a result, or in a similar manner.
The refactoring was OK'd by Anton Korobeynikov on llvmdev.
Note: this touches the target interfaces, so out-of-tree targets may
be affected.
llvm-svn: 175788
The liveout lists are about to be removed from MRI, this is the only
place they were used after register allocation.
Get the live out V registers directly from the return instructions
instead.
llvm-svn: 174399
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
directly.
This is in preparation for removing the use of the 'Attribute' class as a
collection of attributes. That will shift to the AttributeSet class instead.
llvm-svn: 171253
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
the Altivec extensions were introduced. Its use is optional, and
allows the compiler to communicate to the operating system which
vector registers should be saved and restored during a context switch.
In practice, this information is ignored by the various operating
systems using the SVR4 ABI; the kernel saves and restores the entire
register state. Setting the VRSAVE register is no longer performed by
the AIX XL compilers, the IBM i compilers, or by GCC on Power Linux
systems. It seems best to avoid this logic within LLVM as well.
This patch avoids generating code to update and restore VRSAVE for the
PowerPC SVR4 ABIs (32- and 64-bit). The code remains in place for the
Darwin ABI.
llvm-svn: 165656
We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.
llvm-svn: 165488
nonvolatile condition register fields across calls under the SVR4 ABIs.
* With the 64-bit ABI, the save location is at a fixed offset of 8 from
the stack pointer. The frame pointer cannot be used to access this
portion of the stack frame since the distance from the frame pointer may
change with alloca calls.
* With the 32-bit ABI, the save location is just below the general
register save area, and is accessed via the frame pointer like the rest
of the save areas. This is an optional slot, so it must only be created
if any of CR2, CR3, and CR4 were modified.
* For both ABIs, save/restore logic is generated only if one of the
nonvolatile CR fields were modified.
I also took this opportunity to clean up an extra FIXME in
PPCFrameLowering.h. Save area offsets for 32-bit GPRs are meaningless
for the 64-bit ABI, so I removed them for correctness and efficiency.
Fixes PR13708 and partially also PR13623. It lets us enable exception handling
on PPC64.
Patch by William J. Schmidt!
llvm-svn: 163713
The current code will generate a prologue which starts with something like:
mflr 0
stw 31, -4(1)
stw 0, 4(1)
stwu 1, -16(1)
But under the PPC32 SVR4 ABI, access to negative offsets from R1 is not allowed.
This was pointed out by Peter Bergner.
llvm-svn: 157133