Slight reorganisation of PPC instruction classes for scheduling. No
functionality change for existing subtargets.
- Clearly separate load/store-with-update instructions from regular loads and stores.
- Split IntRotateD -> IntRotateD and IntRotateDI
- Split out fsub and fadd from FPGeneral -> FPAddSub
- Update existing itineraries
Patch by Tobias von Koch.
llvm-svn: 162729
Allow load-immediates to be rematerialised in the register coalescer for
PPC. This makes test/CodeGen/PowerPC/big-endian-formal-args.ll fail,
because it relies on a register move getting emitted. The immediate load is
equivalent, so change this test case.
Patch by Tobias von Koch.
llvm-svn: 162727
The MFTB instruction itself is being phased out, and its functionality
is provided by MFSPR. According to the ISA docs, using MFSPR works on all known
chips except for the 601 (which did not have a timebase register anyway)
and the POWER3.
Thanks to Adhemerval Zanella for pointing this out!
llvm-svn: 161346
On PPC64, this can be done with a simple TableGen pattern.
To enable this, I've added the (otherwise missing) readcyclecounter
SDNode definition to TargetSelectionDAG.td.
llvm-svn: 161302
Call instructions are no longer required to be variadic, and
variable_ops should only be used for instructions that encode a variable
number of arguments, like the ARM stm/ldm instructions.
llvm-svn: 160189
The PPC64 backend had patterns for i32 <-> i64 extensions and truncations that
would leave self-moves in the final assembly. Replacing those patterns with ones
based on the SUBREG builtins yields better-looking code.
Thanks to Jakob and Owen for their suggestions in this matter.
llvm-svn: 158283
This pass is derived from the Hexagon HardwareLoops pass. The only significant enhancement over the Hexagon
pass is that PPCCTRLoops will also attempt to delete the replaced add and compare operations if they are
no longer otherwise used. Also, invalid preheader DebugLoc is not used.
llvm-svn: 158204
Loads and stores can have different pipeline behavior, especially on
embedded chips. This change allows those differences to be expressed.
Except for the 440 scheduler, there are no functionality changes.
On the 440, the latency adjustment is only by one cycle, and so this
probably does not affect much. Nevertheless, it will make a larger
difference in the future and this removes a FIXME from the 440 itin.
llvm-svn: 153821
Dynamic linking on PPC64 has had problems since we had to move the top-down
hazard-detection logic post-ra. For dynamic linking to work there needs to be
a nop placed after every call. It turns out that it is really hard to guarantee
that nothing will be placed in between the call (bl) and the nop during post-ra
scheduling. Previous attempts at fixing this by placing logic inside the
hazard detector only partially worked.
This is now fixed in a different way: call+nop codegen-only instructions. As far
as CodeGen is concerned the pair is now a single instruction and cannot be split.
This solution works much better than previous attempts.
The scoreboard hazard detector is also renamed to be more generic, there is currently
no cpu-specific logic in it.
llvm-svn: 153816
- Check for MTCTR8 in addition to MTCTR when looking up a hazard.
- When lowering an indirect call use CTR8 when targeting 64bit.
- Introduce BCTR8 that uses CTR8 and use it on 64bit when expanding ISD::BRIND.
The last change fixes PR8487. With those changes, we are able to compile a
running "ls" and "sh" on FreeBSD/PowerPC64.
llvm-svn: 132552
piclabel operand. The operand in the tablegen definition doesn't actually turn
into an MI operand, so it just confuses anything checking the TargetInstrDesc
for the number of operands. It suffices to just have an implicit def of LR.
llvm-svn: 131626
into the immediate field. This allows us to encode stuff like this:
lbz r3, lo16(__ZL4init)(r4) ; globalopt.cpp:5
; encoding: [0x88,0x64,A,A]
; fixup A - offset: 0, value: lo16(__ZL4init), kind: fixup_ppc_lo16
stw r3, lo16(__ZL1s)(r5) ; globalopt.cpp:6
; encoding: [0x90,0x65,A,A]
; fixup A - offset: 0, value: lo16(__ZL1s), kind: fixup_ppc_lo16
With this, we should have a completely function MCCodeEmitter for PPC, wewt.
llvm-svn: 119134
modes. For example, we now get:
ld r3, lo16(_G)(r3) ; encoding: [0xe8,0x63,A,0bAAAAAA00]
; fixup A - offset: 0, value: lo16(_G), kind: fixup_ppc_lo14
llvm-svn: 119133
but codegen'd differently. This really wanted to use some
sort of subreg to get the low 4 bytes of the G8RC register
or something. However, it's invalid and nothing is testing
it, so I'm just zapping the bogosity.
llvm-svn: 97345
bunch of associated comments, because it doesn't have anything to do
with DAGs or scheduling. This is another step in decoupling MachineInstr
emitting from scheduling.
llvm-svn: 85517
The Link Register is volatile when using the 32-bit SVR4 ABI.
Make it possible to use the 64-bit SVR4 ABI.
Add non-volatile registers for the 64-bit SVR4 ABI.
Make sure r2 is a reserved register when using the 64-bit SVR4 ABI.
Update PPCFrameInfo for the 64-bit SVR4 ABI.
Add FIXME for 64-bit Darwin PPC.
Insert NOP instruction after direct function calls.
Emit official procedure descriptors.
Create TOC entries for GlobalAddress references.
Spill 64-bit non-volatile registers to the correct slots.
Only custom lower VAARG when using the 32-bit SVR4 ABI.
Use simple VASTART lowering for the 64-bit SVR4 ABI.
llvm-svn: 79091
Make CalculateParameterAndLinkageAreaSize() Darwin-specific.
Remove SVR4 specific code from LowerCALL_Darwin() and LowerFORMAL_ARGUMENTS_Darwin().
Rename MachoABI to DarwinABI for consistency.
Rename ELF ABI to SVR4 ABI for consistency.
Factor out common call return lowering between the Darwin and SVR4 ABI.
Factor out common call lowering between the Darwin and SVR4 ABI.
llvm-svn: 74766
is set but mayLoad is not set. Fix all the problems this turned up.
Change code to not use isSimpleLoad instead of mayLoad unless it
really wants isSimpleLoad.
llvm-svn: 60459
allows ppcf128->int conversion to work with
DeadInstructionElimination. This is now turned
off but RM is harmless. It does not do a complete
job of modeling the rounding mode.
Revert marking MFCR as using all 7 CR subregisters;
while correct, this caused the problem in PR 2964,
plus the local RA crash noted in the comments.
This was needed to make DeadInstructionElimination,
but as we are not running that, it is backed out
for now. Eventually it should go back in and the
other problems fixed where they're broken.
llvm-svn: 58391
Move platform independent code (lowering of possibly overwritten
arguments, check for tail call optimization eligibility) from
target X86ISelectionLowering.cpp to TargetLowering.h and
SelectionDAGISel.cpp.
Initial PowerPC tail call implementation:
Support ppc32 implemented and tested (passes my tests and
test-suite llvm-test).
Support ppc64 implemented and half tested (passes my tests).
On ppc tail call optimization is performed if
caller and callee are fastcc
call is a tail call (in tail call position, call followed by ret)
no variable argument lists or byval arguments
option -tailcallopt is enabled
Supported:
* non pic tail calls on linux/darwin
* module-local tail calls on linux(PIC/GOT)/darwin(PIC)
* inter-module tail calls on darwin(PIC)
If constraints are not met a normal call will be emitted.
A test checking the argument lowering behaviour on x86-64 was added.
llvm-svn: 50477