The name field is optional if the custom code is supplied, so this updates the
documentation for LangOpt and introduces a tablegen warning if both custom code
and a language option name are supplied.
After this change, clang spends ~200ms parsing Attrs.inc instead of
~560ms. A large part of the cost was from the StringSwitch
instantiations, but this is a good way to avoid similar problems in the
future.
Reviewed By: aaron.ballman, rjmccall
Differential Revision: https://reviews.llvm.org/D76040
Summary:
We were generating the declarations of polymorphic intrinsics using
`__attribute__((overloadable))`. But `overloadable` is a valid
identifier for an end user to define as a macro in a C program, and if
they do that before including `<arm_mve.h>`, then we shouldn't cause a
compile error.
Fixed to spell the attribute name `__overloadable__` instead.
Reviewers: miyuki, MarkMurrayARM, ostannard
Reviewed By: miyuki
Subscribers: kristof.beyls, dmgreen, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75997
Summary:
This patch generalizes the existing code to support CDE intrinsics
which will share some properties with existing MVE intrinsics
(some of the intrinsics will be polymorphic and accept/return values
of MVE vector types).
Specifically the patch:
* Adds new tablegen backends -gen-arm-cde-builtin-def,
-gen-arm-cde-builtin-codegen, -gen-arm-cde-builtin-sema,
-gen-arm-cde-builtin-aliases, -gen-arm-cde-builtin-header based on
existing MVE backends.
* Renames the '__clang_arm_mve_alias' attribute into
'__clang_arm_builtin_alias' (it will be used with CDE intrinsics as
well as MVE intrinsics)
* Implements semantic checks for the coprocessor argument of the CDE
intrinsics as well as the existing coprocessor intrinsics.
* Adds one CDE intrinsic __arm_cx1 to test the above changes
Reviewers: simon_tatham, MarkMurrayARM, ostannard, dmgreen
Reviewed By: simon_tatham
Subscribers: sdesmalen, mgorny, kristof.beyls, danielkiss, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D75850
Lots of headers pass around MemoryBuffer objects, but very few open
them. Let those that do include FileSystem.h.
Saves ~250 includes of Chrono.h & FileSystem.h:
$ diff -u thedeps-before.txt thedeps-after.txt | grep '^[-+] ' | sort | uniq -c | sort -nr
254 - ../llvm/include/llvm/Support/FileSystem.h
253 - ../llvm/include/llvm/Support/Chrono.h
237 - ../llvm/include/llvm/Support/NativeFormatting.h
237 - ../llvm/include/llvm/Support/FormatProviders.h
192 - ../llvm/include/llvm/ADT/StringSwitch.h
190 - ../llvm/include/llvm/Support/FormatVariadicDetails.h
...
This requires duplicating the file_t typedef, which is unfortunate. I
sunk the choice of mapping mode down into the cpp file using variable
template specializations instead of class members in headers.
When constructing a ParsedAttr the ParsedAttrInfo gets looked up in the
AttrInfoMap, which is auto-generated using tablegen. If that lookup fails then
we look through the ParsedAttrInfos that plugins have added to the registry and
check if any has a spelling that matches.
Differential Revision: https://reviews.llvm.org/D31338
This doesn't do anything on its own, but it's the first step towards
allowing plugins to define attributes. It does simplify the
ParsedAttrInfo generation in ClangAttrEmitter a little though.
Differential Revision: https://reviews.llvm.org/D31337
Summary:
These are in some sense the inverse of vmovl[bt]q: they take a vector
of n wide elements and truncate each to half its width. So they only
write half a vector's worth of output data, and therefore they also
take an 'inactive' parameter to provide the other half of the data in
the output vector. So vmovnb overwrites the even lanes of 'inactive'
with the narrowed values from the main input, and vmovnt overwrites
the odd lanes.
LLVM had existing codegen which generates these MVE instructions in
response to IR that takes two vectors of wide elements, or two vectors
of narrow ones. But in this case, we have one vector of each. So my
clang codegen strategy is to narrow the input vector of wide elements
by simply reinterpreting it as the output type, and then we have two
narrow vectors and can represent the operation as a vector shuffle
that interleaves lanes from both of them.
Even so, not all the cases I needed ended up being selected as a
single MVE instruction, so I've added a couple more patterns that spot
combinations of the 'MVEvmovn' and 'ARMvrev32' SDNodes which can be
generated as a VMOVN instruction with operands swapped.
This commit adds the unpredicated forms only.
Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74337
This patch implements an almost complete handling of OpenMP
contexts/traits such that we can reuse most of the logic in Flang
through the OMPContext.{h,cpp} in llvm/Frontend/OpenMP.
All but construct SIMD specifiers, e.g., inbranch, and the device ISA
selector are define in `llvm/lib/Frontend/OpenMP/OMPKinds.def`. From
these definitions we generate the enum classes `TraitSet`,
`TraitSelector`, and `TraitProperty` as well as conversion and helper
functions in `llvm/lib/Frontend/OpenMP/OMPContext.{h,cpp}`.
The above enum classes are used in the parser, sema, and the AST
attribute. The latter is not a collection of multiple primitive variant
arguments that contain encodings via numbers and strings but instead a
tree that mirrors the `match` clause (see `struct OpenMPTraitInfo`).
The changes to the parser make it more forgiving when wrong syntax is
read and they also resulted in more specialized diagnostics. The tests
are updated and the core issues are detected as before. Here and
elsewhere this patch tries to be generic, thus we do not distinguish
what selector set, selector, or property is parsed except if they do
behave exceptionally, as for example `user={condition(EXPR)}` does.
The sema logic changed in two ways: First, the OMPDeclareVariantAttr
representation changed, as mentioned above, and the sema was adjusted to
work with the new `OpenMPTraitInfo`. Second, the matching and scoring
logic moved into `OMPContext.{h,cpp}`. It is implemented on a flat
representation of the `match` clause that is not tied to clang.
`OpenMPTraitInfo` provides a method to generate this flat structure (see
`struct VariantMatchInfo`) by computing integer score values and boolean
user conditions from the `clang::Expr` we keep for them.
The OpenMP context is now an explicit object (see `struct OMPContext`).
This is in anticipation of construct traits that need to be tracked. The
OpenMP context, as well as the `VariantMatchInfo`, are basically made up
of a set of active or respectively required traits, e.g., 'host', and an
ordered container of constructs which allows duplication. Matching and
scoring is kept as generic as possible to allow easy extension in the
future.
---
Test changes:
The messages checked in `OpenMP/declare_variant_messages.{c,cpp}` have
been auto generated to match the new warnings and notes of the parser.
The "subset" checks were reversed causing the wrong version to be
picked. The tests have been adjusted to correct this.
We do not print scores if the user did not provide one.
We print spaces to make lists in the `match` clause more legible.
Reviewers: kiranchandramohan, ABataev, RaviNarayanaswamy, gtbercea, grokos, sdmitriev, JonChesterfield, hfinkel, fghanim
Subscribers: merge_guards_bot, rampitec, mgorny, hiraditya, aheejin, fedor.sergeev, simoncook, bollu, guansong, dexonsmith, jfb, s.egerton, llvm-commits, cfe-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71830
Reduce the size of some of the TableGen'ed OpenCL builtin function
tables:
- Use bit fields for bools such that they are packed together. This
saves about 7kb.
- Use unsigned short for SignatureTable. This saves about 10kb.
Summary:
These instructions generate a vector of consecutive elements starting
from a given base value and incrementing by 1, 2, 4 or 8. The `wdup`
versions also wrap the values back to zero when they reach a given
limit value. The instruction updates the scalar base register so that
another use of the same instruction will continue the sequence from
where the previous one left off.
At the IR level, I've represented these instructions as a family of
target-specific intrinsics with two return values (the constructed
vector and the updated base). The user-facing ACLE API provides a set
of intrinsics that throw away the written-back base and another set
that receive it as a pointer so they can update it, plus the usual
predicated versions.
Because the intrinsics return two values (as do the underlying
instructions), the isel has to be done in C++.
This is the first family of MVE intrinsics that use the `imm_1248`
immediate type in the clang Tablegen framework, so naturally, I found
I'd given it the wrong C integer type. Also added some tests of the
check that the immediate has a legal value, because this is the first
time those particular checks have been exercised.
Finally, I also had to fix a bug in MveEmitter which failed an
assertion when I nested two `seq` nodes (the inner one used to extract
the two values from the pair returned by the IR intrinsic, and the
outer one put on by the predication multiclass).
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73357
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Summary:
Apparently nobody has tried this in months of development. It turns
out that `FunctionDecl::getBuiltinID` will never consider a function
to be a builtin if it is in C++ and not extern "C". So none of the
function declarations in <arm_mve.h> are recognized as builtins when
clang is compiling in C++ mode: it just emits calls to them as
ordinary functions, which then turn out not to exist at link time.
The trivial fix is to wrap most of arm_mve.h in an extern "C".
Added a test in clang/test/CodeGen/arm-mve-intrinsics which checks
basic functioning of the MVE header file in C++ mode. I've filled it
with copies of existing test functions from other files in that
directory, including a few moderately tricky cases of overloading (in
particular one that relies on the strict-polymorphism attribute added
in D72518).
(I considered making //every// test in that directory compile in both
C and C++ mode and check the code generation was identical. But I
think that would increase testing time by more than the value it adds,
and also update_cc_test_checks gets confused when the output function
name varies between RUN lines.)
Reviewers: LukeGeeson, MarkMurrayARM, miyuki, dmgreen
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D73268
Summary:
Immediate vmvnq is code-generated as a simple vector constant in IR,
and left to the backend to recognize that it can be created with an
MVE VMVN instruction. The predicated version is represented as a
select between the input and the same constant, and I've added a
Tablegen isel rule to turn that into a predicated VMVN. (That should
be better than the previous VMVN + VPSEL: it's the same number of
instructions but now it can fold into an adjacent VPT block.)
The unpredicated forms of VBIC and VORR are done by enabling the same
isel lowering as for NEON, recognizing appropriate immediates and
rewriting them as ARMISD::VBICIMM / ARMISD::VORRIMM SDNodes, which I
then instruction-select into the right MVE instructions (now that I've
also reworked those instructions to use the same MC operand encoding).
In order to do that, I had to promote the Tablegen SDNode instance
`NEONvorrImm` to a general `ARMvorrImm` available in MVE as well, and
similarly for `NEONvbicImm`.
The predicated forms of VBIC and VORR are represented as a vector
select between the original input vector and the output of the
unpredicated operation. The main convenience of this is that it still
lets me use the existing isel lowering for VBICIMM/VORRIMM, and not
have to write another copy of the operand encoding translation code.
This intrinsic family is the first to use the `imm_simd` system I put
into the MveEmitter tablegen backend. So, naturally, it showed up a
bug or two (emitting bogus range checks and the like). Fixed those,
and added a full set of tests for the permissible immediates in the
existing Sema test.
Also adjusted the isel pattern for `vmovlb.u8`, which stopped matching
because lowering started turning its input into a VBICIMM. Now it
recognizes the VBICIMM instead.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D72934
This is applied to the vector types defined in <arm_mve.h> for use
with the intrinsics for the ARM MVE vector architecture.
Its purpose is to inhibit lax vector conversions, but only in the
context of overload resolution of the MVE polymorphic intrinsic
functions. This solves an ambiguity problem with polymorphic MVE
intrinsics that take a vector and a scalar argument: the scalar
argument can often have the wrong integer type due to default integer
promotions or unsuffixed literals, and therefore, the type of the
vector argument should be considered trustworthy when resolving MVE
polymorphism.
As part of the same change, I've added the new attribute to the
declarations generated by the MveEmitter Tablegen backend (and
corrected a namespace issue with the other attribute while I was
there).
Reviewers: aaron.ballman, dmgreen
Reviewed By: aaron.ballman
Subscribers: kristof.beyls, JDevlieghere, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D72518
-Werror clang build is broken now.
tools/clang/lib/Sema/OpenCLBuiltins.inc:11824:5: error: default label in
switch which covers all enumeration values
[-Werror,-Wcovered-switch-default]
default:
We don't need default now, since all enumeration values are covered.
Reviewed By: svenvh
Differential Revision: https://reviews.llvm.org/D72707
This batch of intrinsics covers two sets of immediate shift
instructions, which have in common that they only overwrite part of
their output register and so they need an extra input giving its
previous value.
The VSLI and VSRI instructions shift each lane of the input vector
left or right just as if they were normal immediate VSHL/VSHR, but
then they only overwrite the output bits that correspond to actual
shifted bits of the input. So VSLI will leave the low n bits of each
output lane unchanged, and VSRI the same with the top n bits.
The V[Q][R]SHR[U]N family are all narrowing shifts: they take an input
vector of 2n-bit integers, shift each lane right by a constant, and
then narrowing the shifted result to only n bits. So they only
overwrite half of the n-bit lanes in the output register, and the B/T
suffix indicates whether it's the bottom or top half of each 2n-bit
lane.
I've implemented the whole of the latter family using a single IR
intrinsic `vshrn`, which takes a lot of i32 parameters indicating
which instruction it expands to (by specifying signedness of the input
and output types, whether it saturates and/or rounds, etc).
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D72328
Summary:
The ACLE intrinsics with `gather_base` or `scatter_base` in the name
are wrappers on the MVE load/store instructions that take a vector of
base addresses and an immediate offset. The immediate offset can be up
to 127 times the alignment unit, and it can be positive or negative.
At the MC layer, we got that right. But in the Sema error checking for
the wrapping intrinsics, the offset was erroneously constrained to be
positive.
To fix this I've adjusted the `imm_mem7bit` class in the Tablegen that
defines the intrinsics. But that causes integer literals like
`0xfffffffffffffe04` to appear in the autogenerated calls to
`SemaBuiltinConstantArgRange`, which provokes a compiler warning
because that's out of the non-overflowing range of an `int64_t`. So
I've also tweaked `MveEmitter` to emit that as `-0x1fc` instead.
Updated the tests of the Sema checks themselves, and also adjusted a
random sample of the CodeGen tests to actually use negative offsets
and prove they get all the way through code generation without causing
a crash.
Reviewers: dmgreen, miyuki, MarkMurrayARM
Reviewed By: dmgreen
Subscribers: kristof.beyls, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D72268
Provide a mechanism to attach OpenCL extension information to builtin
functions, so that their use can be restricted according to the
extension(s) the builtin is part of.
Patch by Pierre Gondois and Sven van Haastregt.
Differential Revision: https://reviews.llvm.org/D71476
The basic technical design here is that we have three levels
of readers and writers:
- At the lowest level, there's a `Basic{Reader,Writer}` that knows
how to emit the basic structures of the AST. CRTP allows this to
be metaprogrammed so that the client only needs to support a handful
of primitive types (e.g. `uint64_t` and `IdentifierInfo*`) and more
complicated "inline" structures such as `DeclarationName` can just
be emitted in terms of those primitives.
In Clang's binary-serialization code, these are
`ASTRecord{Reader,Writer}`. For now, a large number of basic
structures are still emitted explicitly by code on those classes
rather than by either TableGen or CRTP metaprogramming, but I
expect to move more of these over.
- In the middle, there's a `Property{Reader,Writer}` which is
responsible for processing the properties of a larger object. The
object-level reader/writer asks the property-level reader/writer to
project out a particular property, yielding a basic reader/writer
which will be used to read/write the property's value, like so:
```
propertyWriter.find("count").writeUInt32(node->getCount());
```
Clang's binary-serialization code ignores this level (it uses
the basic reader/writer as the property reader/writer and has the
projection methods just return `*this`) and simply relies on the
roperties being read/written in a stable order.
- At the highest level, there's an object reader/writer (e.g.
`Type{Reader,Writer}` which emits a logical object with properties.
Think of this as writing something like a JSON dictionary literal.
I haven't introduced support for bitcode abbreviations yet --- it
turns out that there aren't any operative abbreviations for types
besides the QualType one --- but I do have some ideas of how they
should work. At any rate, they'll be necessary in order to handle
statements.
I'm sorry for not disentangling the patches that added basic and type
reader/writers; I made some effort to, but I ran out of energy after
disentangling a number of other patches from the work.
Negligible impact on module size, time to build a set of about 20
fairly large modules, or time to read a few declarations out of them.
There are three significant changes here:
- Most of the methods to read various embedded structures (`APInt`,
`NestedNameSpecifier`, `DeclarationName`, etc.) have been moved
from `ASTReader` to `ASTRecordReader`. This cleans up quite a
bit of code which was passing around `(F, Record, Idx)` arguments
everywhere or doing explicit indexing, and it nicely parallels
how it works on the writer side. It also sets us up to then move
most of these methods into the `BasicReader`s that I'm introducing
as part of abstract serialization.
As part of this, several of the top-level reader methods (e.g.
`readTypeRecord`) have been converted to use `ASTRecordReader`
internally, which is a nice readability improvement.
- I've standardized most of these method names on `readFoo` rather
than `ReadFoo` (used in some of the helper structures) or `GetFoo`
(used for some specific types for no apparent reason).
- I've changed a few of these methods to return their result instead
of reading into an argument passed by reference. This is partly
for general consistency and partly because it will make the
metaprogramming easier with abstract serialization.
the tblgen AST node hierarchies.
Not totally NFC because both of the emitters now emit in a different
order. The type-nodes emitter now visits nodes in hierarchy order,
which means we could use range checks in classof if we had any types
that would benefit from that; currently we do not. The AST-nodes
emitter now uses a multimap keyed by the name of the record; previously
it was using `Record*`, which of couse isn't stable across processes
and may have led to non-reproducible builds in some circumstances.
This adds the family of `vshlq_n` and `vshrq_n` ACLE intrinsics, which
shift every lane of a vector left or right by a compile-time
immediate. They mostly work by expanding to the IR `shl`, `lshr` and
`ashr` operations, with their second operand being a vector splat of
the immediate.
There's a fiddly special case, though. ACLE specifies that the
immediate in `vshrq_n` can take values up to //and including// the bit
size of the vector lane. But LLVM IR thinks that shifting right by the
full size of the lane is UB, and feels free to replace the `lshr` with
an `undef` half way through the optimization pipeline. Hence, to keep
this legal in source code, I have to detect it at codegen time.
Logical (unsigned) right shifts by the element size are handled by
simply emitting the zero vector; arithmetic ones are converted into a
shift of one bit less, which will always give the same output.
In order to do that check, I also had to enhance the tablegen
MveEmitter so that it can cope with converting a builtin function's
operand into a bare integer to pass to a code-generating subfunction.
Previously the only bare integers it knew how to handle were flags
generated from within `arm_mve.td`.
Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard
Reviewed By: dmgreen, MarkMurrayARM
Subscribers: echristo, hokein, rdhindsa, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71065
Summary:
This adds the family of `vshlq_n` and `vshrq_n` ACLE intrinsics, which
shift every lane of a vector left or right by a compile-time
immediate. They mostly work by expanding to the IR `shl`, `lshr` and
`ashr` operations, with their second operand being a vector splat of
the immediate.
There's a fiddly special case, though. ACLE specifies that the
immediate in `vshrq_n` can take values up to //and including// the bit
size of the vector lane. But LLVM IR thinks that shifting right by the
full size of the lane is UB, and feels free to replace the `lshr` with
an `undef` half way through the optimization pipeline. Hence, to keep
this legal in source code, I have to detect it at codegen time.
Logical (unsigned) right shifts by the element size are handled by
simply emitting the zero vector; arithmetic ones are converted into a
shift of one bit less, which will always give the same output.
In order to do that check, I also had to enhance the tablegen
MveEmitter so that it can cope with converting a builtin function's
operand into a bare integer to pass to a code-generating subfunction.
Previously the only bare integers it knew how to handle were flags
generated from within `arm_mve.td`.
Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71065
Summary:
This commit adds the `vpselq` intrinsics which take an MVE predicate
word and select lanes from two vectors; the `vctp` intrinsics which
create a tail predicate word suitable for processing the first m
elements of a vector (e.g. in the last iteration of a loop); and
`vpnot`, which simply complements a predicate word and is just
syntactic sugar for the `~` operator.
The `vctp` ACLE intrinsics are lowered to the IR intrinsics we've
already added (and which D70592 just reorganized). I've filled in the
missing isel rule for VCTP64, and added another set of rules to
generate the predicated forms.
I needed one small tweak in MveEmitter to allow the `unpromoted` type
modifier to apply to predicates as well as integers, so that `vpnot`
doesn't pointlessly convert its input integer to an `<n x i1>` before
complementing it.
Reviewers: ostannard, MarkMurrayARM, dmgreen
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D70485
The modifier system used to mutate types on NEON intrinsic definitions had a
separate letter for all kinds of transformations that might be needed, and we
were quite quickly running out of letters to use. This patch converts to a much
smaller set of orthogonal modifiers that can be applied together to achieve the
desired effect.
When merging with downstream it is likely to cause a conflict with any local
modifications to the .td files. There is a new script in
utils/convert_arm_neon.py that was used to convert all .td definitions and I
would suggest running it on the last downstream version of those files before
this commit rather than resolving conflicts manually.
The original version broke vcreate_* because it became a macro and didn't
apply the normal integer promotion rules before bitcasting to a vector.
This adds a temporary.
This reverts commit 3f76260dc0.
Breaks at least these tests on Windows:
Clang :: Driver/clang-offload-bundler.c
Clang :: Driver/clang-offload-wrapper.c
This broke the vcreate_u64 intrinsic. Example:
$ cat /tmp/a.cc
#include <arm_neon.h>
void g() {
auto v = vcreate_u64(0);
}
$ bin/clang -c /tmp/a.cc --target=arm-linux-androideabi16 -march=armv7-a
/tmp/a.cc:4:12: error: C-style cast from scalar 'int' to vector 'uint64x1_t' (vector of 1 'uint64_t' value) of different size
auto v = vcreate_u64(0);
^~~~~~~~~~~~~~
/work/llvm.monorepo/build.release/lib/clang/10.0.0/include/arm_neon.h:4144:11: note: expanded from macro 'vcreate_u64'
__ret = (uint64x1_t)(__p0); \
^~~~~~~~~~~~~~~~~~
Reverting until this can be investigated.
> The modifier system used to mutate types on NEON intrinsic definitions had a
> separate letter for all kinds of transformations that might be needed, and we
> were quite quickly running out of letters to use. This patch converts to a much
> smaller set of orthogonal modifiers that can be applied together to achieve the
> desired effect.
>
> When merging with downstream it is likely to cause a conflict with any local
> modifications to the .td files. There is a new script in
> utils/convert_arm_neon.py that was used to convert all .td definitions and I
> would suggest running it on the last downstream version of those files before
> this commit rather than resolving conflicts manually.
The modifier system used to mutate types on NEON intrinsic definitions had a
separate letter for all kinds of transformations that might be needed, and we
were quite quickly running out of letters to use. This patch converts to a much
smaller set of orthogonal modifiers that can be applied together to achieve the
desired effect.
When merging with downstream it is likely to cause a conflict with any local
modifications to the .td files. There is a new script in
utils/convert_arm_neon.py that was used to convert all .td definitions and I
would suggest running it on the last downstream version of those files before
this commit rather than resolving conflicts manually.
For some reason we were not casting a fairly obscure class of builtin calls we
expected to be polymorphic to vectors of char. It worked because the only
affected intrinsics weren't actually polymorphic after all, but is
unnecessarily complicated.
This adds the `vgetq_lane` and `vsetq_lane` families, to copy between
a scalar and a specified lane of a vector.
One of the new `vgetq_lane` intrinsics returns a `float16_t`, which
causes a compile error if `%clang_cc1` doesn't get the option
`-fallow-half-arguments-and-returns`. The driver passes that option to
cc1 already, but I've had to edit all the explicit cc1 command lines
in the existing MVE intrinsics tests.
A couple of fixes are included for the code I wrote up front in
MveEmitter to support lane-index immediates (and which nothing has
tested until now): the type was wrong (`uint32_t` instead of `int`)
and the range was off by one.
I've also added a method of bypassing the default promotion to `i32`
that is done by the MveEmitter code generation: it's sensible to
promote short scalars like `i16` to `i32` if they're going to be
passed to custom IR intrinsics representing a machine instruction
operating on GPRs, but not if they're going to be passed to standard
IR operations like `insertelement` which expect the exact type.
Reviewers: ostannard, MarkMurrayARM, dmgreen
Reviewed By: dmgreen
Subscribers: kristof.beyls, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D70188
This batch of intrinsics includes lots of things that move vector data
around or change its type without really affecting its value very
much. It includes the `vreinterpretq` family (cast one vector type to
another); `vuninitializedq` (create a vector of a given type with
don't-care contents); and `vcreateq` (make a 128-bit vector out of two
`uint64_t` halves).
These are all implemented using completely standard IR that's already
tested in existing LLVM unit tests, so I've just written a clang test
to check the IR is correct, and left it at that.
I've also added some richer infrastructure to the MveEmitter Tablegen
backend, to make it specify the exact integer type of integer
arguments passed to IR construction functions, and wrap those
arguments in a `static_cast` in the autogenerated C++. That was
necessary to prevent an overloading ambiguity when passing the integer
literal `0` to `IRBuilder::CreateInsertElement`, because otherwise, it
could mean either a null pointer `llvm::Value *` or a zero `uint64_t`.
Reviewers: ostannard, MarkMurrayARM, dmgreen
Subscribers: kristof.beyls, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D70133
This patch adds the ACLE intrinsics for all the MVE load and store
instructions not already handled by D69791. These ones don't need new
IR intrinsics, because they can be implemented in terms of standard
LLVM IR constructions.
Some of the load and store instructions access less than 128 bits of
memory, sign/zero extending each value to a wider vector lane on load
or truncating it on store. These are represented in IR by a load of a
shorter vector followed by a zext/sext, and conversely, a trunc
followed by a short store. Existing ISel patterns already recognize
those combinations and turn them into the right MVE instructions.
The predicated forms of all these instructions are represented in the
same way, except that the ordinary load/store operation is replaced
with the existing intrinsics @llvm.masked.{load,store}. These are
currently only code-generated as predicated MVE load/store
instructions if you give LLVM the `-enable-arm-maskedldst` option; so
I've done that in the LLVM codegen test. When we make that the
default, that option can be removed.
In the Tablegen backend, I've had to add a handful of extra support
features:
* We need to be able to make clang::Address objects out of a
pointer and an alignment (previously we only needed these when the
user passed us an existing one).
* We can now specify vector types that aren't 128 bits wide (for use
in those intermediate values in IR), the parametrized type system
can make one starting from two existing vector types (using the lane
count of one and the element type of the other).
* I've added support for code generation of pointer casts, and for
specifying LLVM types as operands to IRBuilder operations (for zext
and sext, though I think they'll come in useful again).
* Now not all IR construction operations need to be specified as
Builder.CreateFoo; some don't involve a Builder at all, and one
passes it as a parameter to a tiny static helper function in
CGBuiltin.cpp.
Reviewers: ostannard, MarkMurrayARM, dmgreen
Subscribers: kristof.beyls, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D70088