Summary:
This transformation reassociates a n-ary add so that the add can partially reuse
existing instructions. For example, this pass can simplify
void foo(int a, int b) {
bar(a + b);
bar((a + 2) + b);
}
to
void foo(int a, int b) {
int t = a + b;
bar(t);
bar(t + 2);
}
saving one add instruction.
Fixes PR22357 (https://llvm.org/bugs/show_bug.cgi?id=22357).
Test Plan: nary-add.ll
Reviewers: broune, dberlin, hfinkel, meheff, sanjoy, atrick
Reviewed By: sanjoy, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8950
llvm-svn: 234855
Gut the `DIDescriptor` wrappers around `MDLocalScope` subclasses. Note
that `DILexicalBlock` wraps `MDLexicalBlockBase`, not `MDLexicalBlock`.
llvm-svn: 234850
Summary:
Runtime unrolling of loops needs to emit an expression to compute the
loop's runtime trip-count. Avoid runtime unrolling if this computation
will be expensive.
Depends on D8993.
Reviewers: atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8994
llvm-svn: 234846
Summary:
Move isHighCostExpansion from IndVarSimplify to SCEVExpander. This
exposed function will be used in a subsequent change.
Reviewers: bogner, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8995
llvm-svn: 234844
This is along the same lines as r234832, but for `DILocation`. Clean
out all accessors from `DILocation`. Any callers should be using
`MDLocation` directly (e.g., via `operator->()`).
llvm-svn: 234835
Completely gut `DIExpression`, turning it into a simple wrapper around
`MDExpression *`. There are two bits of magic left:
- It's constructed from `const MDExpression*` but convertible to
`MDExpression*`.
- It's default-constructed to `nullptr`.
Otherwise, it should behave quite like a raw pointer. Once I've done
the same to the rest of the `DIDescriptor` subclasses, I'll come back to
delete them entirely (and update call sites as necessary to deal with
the missing magic).
llvm-svn: 234832
Before we had real liveness, we needed to track every value that base pointer
insertion code created because these now might be live. We now just rerun
the data flow liveness algorithm (which is actually faster!) and no longer
need the associated code.
llvm-svn: 234827
Use early-return style that's preferred in LLVM and updating the naming in places I touched with other changes in the last few days. Hopefully, NFC.
llvm-svn: 234785
We use dummy calls to adjust the liveness of values over statepoints in the midst of the insertion. If there are no values which need held live, there's no point in actually inserting the holder.
llvm-svn: 234779
Since we're restructuring the CFG, we also need to make sure to update the analsis passes. While I'm touching the code, I dedicided to restructure it a bit. The code involved here was very confusing. This change moves the normalization to essentially being a pre-pass before the main insertion work and updates a few comments to actually say what is happening and *why*.
The restructuring should be covered by existing tests. I couldn't easily see how to create a test for the invalidation bug. Suggestions welcome.
llvm-svn: 234769
This is related to the issues addressed in 234651. These assertions check the properties ensured by that change at the place of use. Note that a similiar property is checked in checkBasicSSA, but without the reachability constraint. Technically, the liveness would be correct to include unreachable values, but this would be problematic for actual relocation.
llvm-svn: 234766
The check in question is attempting to help find cases where we haven't relocated a pointer at a safepoint we should have. It does this by coercing the value to null at any safepoint which doesn't relocate it.
Unfortunately, this turns out to be rather expensive in terms of memory usage and time. The number of stores inserted can grow with O(number of values x number of statepoints). On at least one example I looked at, over half of peak memory usage was coming from this check.
With this change, the check is no longer enabled by default in Asserts builds. It is enabled for expensive asserts builds and has a command line option to enable it in both Asserts and non-Asserts builds.
llvm-svn: 234761
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
llvm-svn: 234679
When rewriting statepoints to make relocations explicit, we need to have a conservative but consistent notion of where a particular pointer is live at a particular site. The old code just used dominance, which is correct, but decidedly more conservative then it needed to be. This patch implements a simple dataflow algorithm that's run one per function (well, twice counting fixup after base pointer insertion). There's still lots of room to make this faster, but it's fast enough for all practical purposes today.
Differential Revision: http://reviews.llvm.org/D8674
llvm-svn: 234657
After submitting 234651, I noticed I hadn't responded to a review comment by mjacob. This patch addresses that comment and fixes a Release only build problem due to an unused variable.
llvm-svn: 234653
Two related small changes:
Various dominance based queries about liveness can get confused if we're talking about unreachable blocks. To avoid reasoning about such cases, just remove them before rewriting statepoints.
Remove single entry phis (likely left behind by LCSSA) to reduce the number of live values.
Both of these are motivated by http://reviews.llvm.org/D8674 which will be submitted shortly.
Differential Revision: http://reviews.llvm.org/D8675
llvm-svn: 234651
This patch adds limited support for inserting explicit relocations when there's a vector of pointers live over the statepoint. This doesn't handle the case where the vector contains a mix of base and non-base pointers; that's future work.
The current implementation just scalarizes the vector over the gc.statepoint before doing the explicit rewrite. An alternate approach would be to plumb the vector all the way though the backend lowering, but doing that appears challenging. In particular, the size of the indirect spill slot is currently assumed to be sizeof(pointer) throughout the backend.
In practice, this is enough to allow running the SLP and Loop vectorizers before RewriteStatepointsForGC.
Differential Revision: http://reviews.llvm.org/D8671
llvm-svn: 234647
CallSite roughly behaves as a common base CallInst and InvokeInst. Bring
the behavior closer to that model by making upcasts explicit. Downcasts
remain implicit and work as before.
Following dyn_cast as a mental model checking whether a Value *V isa
CallSite now looks like this:
if (auto CS = CallSite(V)) // think dyn_cast
instead of:
if (CallSite CS = V)
This is an extra token but I think it is slightly clearer. Making the
ctor explicit has the advantage of not accidentally creating nullptr
CallSites, e.g. when you pass a Value * to a function taking a CallSite
argument.
llvm-svn: 234601
The plan here is to push the API changes out from the common components
(like Constant::getGetElementPtr and IRBuilder::CreateGEP related
functions) and just update callers to either pass the type if it's
obvious, or pass null.
Do this with LoadInst as well and anything else that comes up, then to
start porting specific uses to not pass null anymore - this may require
some refactoring in each case.
llvm-svn: 234042
Summary:
The old requirement on GEP candidates being in bounds is unnecessary.
For off-bound GEPs, we still have
&B[i * S] = B + (i * S) * e = B + (i * e) * S
Test Plan: slsr_offbound_gep in slsr-gep.ll
Reviewers: meheff
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8809
llvm-svn: 233949
Require the pointee type to be passed explicitly and assert that it is
correct. For now it's possible to pass nullptr here (and I've done so in
a few places in this patch) but eventually that will be disallowed once
all clients have been updated or removed. It'll be a long road to get
all the way there... but if you have the cahnce to update your callers
to pass the type explicitly without depending on a pointer's element
type, that would be a good thing to do soon and a necessary thing to do
eventually.
llvm-svn: 233938
This re-adds float2int to the tree, after fixing PR23038. It turns
out the argument to APSInt() is true-if-unsigned, rather than
true-if-signed :(. Added testcase and explanatory comment.
llvm-svn: 233370
The assertion here was more expensive then it needed to be. We're only inserting allocas in the entry block, so we only need to consider ones in the entry block.
llvm-svn: 233362
Summary:
This patch enhances SLSR to handle another candidate form &B[i * S]. If
we found two candidates
S1: X = &B[i * S]
S2: Y = &B[i' * S]
and S1 dominates S2, we can replace S2 with
Y = &X[(i' - i) * S]
Test Plan:
slsr-gep.ll
X86/no-slsr.ll: verify that we do not run SLSR on GEPs that already fit into
an addressing mode
Reviewers: eliben, atrick, meheff, hfinkel
Reviewed By: hfinkel
Subscribers: sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D7459
llvm-svn: 233286
The changes to InstCombine do seem a bit silly - it doesn't make
anything obviously better to have the caller access the pointers element
type (the thing I'm trying to remove) than the GEP itself, but it's a
helpful migration step. This will allow me to more obviously lock down
GEP (& Load, etc) API usage, then fix all the code that accesses pointer
element types except the places that need to be removed (most of the
InstCombines) anyway - at which point I'll need to just remove all that
code because it won't be meaningful anymore (there will be no pointer
types, so no bitcasts to combine)
llvm-svn: 233126
This caused PR23008, compiles failing with: "Use still stuck around after Def is
destroyed: %.sroa.speculated"
Also reverting follow-up r233064.
llvm-svn: 233105
IRCE requires the induction variables it handles to not sign-overflow.
The current scheme of checking if sext({X,+,S}) == {sext(X),+,sext(S)}
fails when SCEV simplifies sext(X) too. After this change we //also//
check no-signed-wrap by looking at the flags set on the SCEVAddRecExpr.
llvm-svn: 233102
It is possible to have code that converts from integer to float, performs operations then converts back, and the result is provably the same as if integers were used.
This can come from different sources, but the most obvious is a helper function that uses floats but the arguments given at an inlined callsites are integers.
This pass considers all integers requiring a bitwidth less than or equal to the bitwidth of the mantissa of a floating point type (23 for floats, 52 for doubles) as exactly representable in floating point.
To reduce the risk of harming efficient code, the pass only attempts to perform complete removal of inttofp/fptoint operations, not just move them around.
llvm-svn: 233062
Don't use `DebugLoc` accessors if we're pointing at null, which will be
a problem after a WIP patch to make the `DIDescriptor` accessors more
strict. Caught by Frontend/profile-sample-use-loc-tracking.c (in
clang).
llvm-svn: 232792