If we have s_pack_* instructions, legalize this to
G_BUILD_VECTOR_TRUNC from s32 elements. This is closer to how how the
s_pack_* instructions really behave.
If we don't have s_pack_ instructions, expand this by creating a merge
to s32 and bitcasting. This expands to the expected bit operations. I
think this eventually should go in a new bitcast legalize action type
in LegalizerHelper.
We already directly emit the shift operations in RegBankSelect for the
vector case. This could possibly be cleaned up, but I also may want to
defer doing this expansion to selection anyway. I'll see about that
when I try to actually match VOP3P instructions.
This breaks the selection of the build_vector since tablegen doesn't
know how to match G_BUILD_VECTOR_TRUNC yet, so just xfail it for now.
Start using a new strategy with a combination of merge and unmerges.
This allows scalarizing before lowering, which in cases like
<2 x s128> avoids producing giant illegal shifts.
Legalization algorithm is complicated by two facts:
1) While regular instructions should be possible to legalize in
an isolated, per-instruction, context-free manner, legalization
artifacts can only be eliminated in pairs, which could be deeply, and
ultimately arbitrary nested: { [ () ] }, where which paranthesis kind
depicts an artifact kind, like extend, unmerge, etc. Such structure
can only be fully eliminated by simple local combines if they are
attempted in a particular order (inside out), or alternatively by
repeated scans each eliminating only one innermost pair, resulting in
O(n^2) complexity.
2) Some artifacts might in fact be regular instructions that could (and
sometimes should) be legalized by the target-specific rules. Which
means failure to eliminate all artifacts on the first iteration is
not a failure, they need to be tried as instructions, which may
produce more artifacts, including the ones that are in fact regular
instructions, resulting in a non-constant number of iterations
required to finish the process.
I trust the recently introduced termination condition (no new artifacts
were created during as-a-regular-instruction-retrial of artifacts not
eliminated on the previous iteration) to be efficient in providing
termination, but only performing the legalization in full if and only if
at each step such chains of artifacts are successfully eliminated in
full as well.
Which is currently not guaranteed, as the artifact combines are applied
only once and in an arbitrary order that has to do with the order of
creation or insertion of artifacts into their worklist, which is a no
particular order.
In this patch I make a small change to the artifact combiner, making it
to re-insert into the worklist immediate (modulo a look-through copies)
artifact users of each vreg that changes its definition due to an
artifact combine.
Here the first scan through the artifacts worklist, while not
being done in any guaranteed order, only needs to find the innermost
pair(s) of artifacts that could be immediately combined out. After that
the process follows def-use chains, making them shorter at each step, thus
combining everything that can be combined in O(n) time.
Reviewers: volkan, aditya_nandakumar, qcolombet, paquette, aemerson, dsanders
Reviewed By: aditya_nandakumar, paquette
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71448
Summary:
Currently, Legalizer aborts if it’s unable to legalize artifacts. However, it’s
possible to combine them after processing the rest of the instruction because
the legalization is likely to generate more artifacts that allow ArtifactCombiner
to combine away them.
Instead, move illegal artifacts to another list called RetryList and wait until all of the
instruction in InstList are legalized. After that, check if there is any new artifacts and
try to combine them again if that’s the case. If not, abort. The idea is similar to D59339,
but the approach is a bit different.
This patch fixes the issue described above, but the legalizer still may be unable to handle
some cases depending on when to legalize artifacts. So, in the long run, we probably need
a different legalization strategy that handles this dependency in a better way.
Reviewers: dsanders, aditya_nandakumar, qcolombet, arsenm, aemerson, paquette
Reviewed By: dsanders
Subscribers: jvesely, wdng, nhaehnle, rovka, javed.absar, hiraditya, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65894
llvm-svn: 369805
Summary:
Targets often have instructions that can sign-extend certain cases faster
than the equivalent shift-left/arithmetic-shift-right. Such cases can be
identified by matching a shift-left/shift-right pair but there are some
issues with this in the context of combines. For example, suppose you can
sign-extend 8-bit up to 32-bit with a target extend instruction.
%1:_(s32) = G_SHL %0:_(s32), i32 24 # (I've inlined the G_CONSTANT for brevity)
%2:_(s32) = G_ASHR %1:_(s32), i32 24
%3:_(s32) = G_ASHR %2:_(s32), i32 1
would reasonably combine to:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 25
which no longer matches the special case. If your shifts and extend are
equal cost, this would break even as a pair of shifts but if your shift is
more expensive than the extend then it's cheaper as:
%2:_(s32) = G_SEXT_INREG %0:_(s32), i32 8
%3:_(s32) = G_ASHR %2:_(s32), i32 1
It's possible to match the shift-pair in ISel and emit an extend and ashr.
However, this is far from the only way to break this shift pair and make
it hard to match the extends. Another example is that with the right
known-zeros, this:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 24
%3:_(s32) = G_MUL %2:_(s32), i32 2
can become:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 23
All upstream targets have been configured to lower it to the current
G_SHL,G_ASHR pair but will likely want to make it legal in some cases to
handle their faster cases.
To follow-up: Provide a way to legalize based on the constant. At the
moment, I'm thinking that the best way to achieve this is to provide the
MI in LegalityQuery but that opens the door to breaking core principles
of the legalizer (legality is not context sensitive). That said, it's
worth noting that looking at other instructions and acting on that
information doesn't violate this principle in itself. It's only a
violation if, at the end of legalization, a pass that checks legality
without being able to see the context would say an instruction might not be
legal. That's a fairly subtle distinction so to give a concrete example,
saying %2 in:
%1 = G_CONSTANT 16
%2 = G_SEXT_INREG %0, %1
is legal is in violation of that principle if the legality of %2 depends
on %1 being constant and/or being 16. However, legalizing to either:
%2 = G_SEXT_INREG %0, 16
or:
%1 = G_CONSTANT 16
%2:_(s32) = G_SHL %0, %1
%3:_(s32) = G_ASHR %2, %1
depending on whether %1 is constant and 16 does not violate that principle
since both outputs are genuinely legal.
Reviewers: bogner, aditya_nandakumar, volkan, aemerson, paquette, arsenm
Subscribers: sdardis, jvesely, wdng, nhaehnle, rovka, kristof.beyls, javed.absar, hiraditya, jrtc27, atanasyan, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61289
llvm-svn: 368487