We normally avoid "switch (Config->EKind)", but in this case I think
it is worth it.
It is only executed when there is an error and it allows detemplating
a lot of code.
llvm-svn: 321404
This is part of PR35720.
Currently LLD allows dynamic relocations against text when -z notext is given.
Though for non-PIC relocations like R_X86_64_PC32 that does not work,
we produce "relocation R_X86_64_PC32 cannot be used against shared object;"
error because they may overflow in runtime.
Solution implemented is to use PLT for them.
Differential revision: https://reviews.llvm.org/D41541
llvm-svn: 321400
This reduces total allocations when linking clang fsds from 263.21MB
to 174.62MB.
This also has some very nice speed improvements on some
benchmarks. Chromium and clang fsds link 6% faster.
llvm-svn: 319976
This includes a fix to mark copy reloc aliases as used.
Original message:
[ELF] Do not keep symbols if they referenced only from discarded sections.
This patch also ensures that in case of "--as-needed" is used,
DT_NEEDED entries are not created if they are required only by
these eliminated symbols.
llvm-svn: 319215
Summary:
The bug triggers when the following conditions are met:
- A thunk is created in a given input section S
- A linker script is specified
- There is at least one matcher in the linker script .text section output
that does not match any of the sections in the input files, before the matcher
that matches section S.
The issue was found when linking the FreeBSD kernel for MIPS when built
with -fPIC. Patch by Alfredo Mazzinghi.
Reviewers: ruiu, psmith, atanasyan
Reviewed By: ruiu
Subscribers: peter.smith, emaste, sdardis, krytarowski, llvm-commits
Differential Revision: https://reviews.llvm.org/D40174
llvm-svn: 318653
The ISR in the comment should read ISD for InputSectionDescription. The use
of ISR (InputSectionRange) was from the original implementation that did not
use the sections from InputSectionDescription directly.
llvm-svn: 317469
Now that DefinedRegular is the only remaining derived class of
Defined, we can merge the two classes.
Differential Revision: https://reviews.llvm.org/D39667
llvm-svn: 317448
Now that we have only SymbolBody as the symbol class. So, "SymbolBody"
is a bit strange name now. This is a mechanical change generated by
perl -i -pe s/SymbolBody/Symbol/g $(git grep -l SymbolBody lld/ELF lld/COFF)
nd clang-format-diff.
Differential Revision: https://reviews.llvm.org/D39459
llvm-svn: 317370
This is PR34826.
Currently LLD is unable to report line number when reporting
duplicate declaration of some variable.
That happens because for extracting line information we always use
.debug_line section content which describes mapping from machine
instructions to source file locations, what does not help for
variables as does not describe them.
In this patch I am taking the approproate information about
variables locations from the .debug_info section.
Differential revision: https://reviews.llvm.org/D38721
llvm-svn: 317080
SymbolBody and Symbol were separated classes due to a historical reason.
Symbol used to be a pointer to a SymbolBody, and the relationship
between Symbol and SymbolBody was n:1.
r2681780 changed that. Since that patch, SymbolBody and Symbol are
allocated next to each other to improve memory locality, and they have
1:1 relationship now. So, the separation of Symbol and SymbolBody no
longer makes sense.
This patch merges them into one class. In order to avoid updating too
many places, I chose SymbolBody as a unified name. I'll rename it Symbol
in a follow-up patch.
Differential Revision: https://reviews.llvm.org/D39406
llvm-svn: 317006
This change allows Thunks to be added on multiple passes. To do this we must
merge only the thunks added in each pass, and deal with thunks that have
drifted out of range of their callers.
A thunk may end out of range of its caller if enough thunks are added in
between the caller and the thunk. To handle this we create another thunk.
Differential Revision: https://reviews.llvm.org/D34692
llvm-svn: 316754
This change adds initial support for range extension thunks. All thunks must
be created within the first pass so some corner cases are not supported. A
follow up patch will add support for multiple passes.
With this change the existing tests arm-branch-error.s and
arm-thumb-branch-error.s now no longer fail with an out of range branch.
These have been renamed and tests added for the range extension thunk.
Differential Revision: https://reviews.llvm.org/D34691
llvm-svn: 316752
When an OutputSection is larger than the branch range for a Target we
need to place thunks such that they are always in range of their caller,
and sufficiently spaced to maximise the number of callers that can use
the thunk. We use the simple heuristic of placing the
ThunkSection at intervals corresponding to a target specific branch range.
If the OutputSection is small we put the thunks at the end of the executable
sections.
Differential Revision: https://reviews.llvm.org/D34689
llvm-svn: 316751
Instead of maintaining a map of the std::vector to ThunkSections, record the
ThunkSections directly in InputSectionDescription.
Differential Revision: https://reviews.llvm.org/D37743
llvm-svn: 316750
Summary:
The COFF linker and the ELF linker have long had similar but separate
Error.h and Error.cpp files to implement error handling. This change
introduces new error handling code in Common/ErrorHandler.h, changes the
COFF and ELF linkers to use it, and removes the old, separate
implementations.
Reviewers: ruiu
Reviewed By: ruiu
Subscribers: smeenai, jyknight, emaste, sdardis, nemanjai, nhaehnle, mgorny, javed.absar, kbarton, fedor.sergeev, llvm-commits
Differential Revision: https://reviews.llvm.org/D39259
llvm-svn: 316624
Relocations.cpp is still head-scratching. Even though relocations are
processed by multiple functions, the functions are effectively one
gigantic function with lots of local and global shared states, because
they are really tightly coupled. It is really hard to predict whether
a change to a function will or will not affect other functions behaviors.
What I'm trying to do is to rewrite the code without breaking the
existing tests so that the code can tolerate a more aggressive
refactoring (i.e. splitting it to logically separated steps).
llvm-svn: 315673
This is not a mechanical transformation. Even though I believe this
patch is correct, I'm not 100% sure if lld with this patch behaves
exactly the same way as before on all edge cases. At least all tests
still pass.
I'm submitting this patch because it took almost a day to understand
this function, and I don't want to lose it.
llvm-svn: 315658
This patch merges computeAddend and computeMipsAddend.
Getting an addend for a relocation is usually pretty easy:
it is either in the r_addend field (if RELA) or in a target
section (if REL).
However, MIPS has many special rules that are different from
other ELF ABIs. I don't think there were technical reasons to
be different, but the reality is that they are different.
It is unfortunate that we had to pass many parameters to
computeAddend, but it seems unavoidable because of MIPS.
llvm-svn: 315617
This is an attempt to make lld's relocation handler code understandable.
Since I don't fully understand what exactly this function does for all
possible cases (I believe no one can), I'm not really sure if this patch
is NFC, but at least no functionality change intended. All tests still pass.
llvm-svn: 315612
A section was passed to getRelExpr just to create an error message.
But if there's an invalid relocation, we would eventually report it
in relocateOne. So we don't have to pass a section to getRelExpr.
llvm-svn: 315552
We were using uint32_t as the type of relocation kind. It has a
readability issue because what Type really means in `uint32_t Type`
is not obvious. It could be a section type, a symbol type or a
relocation type.
Since we do not do any arithemetic operations on relocation types
(e.g. adding one to R_X86_64_PC32 doesn't make sense), it would be
more natural if they are represented as enums. Unfortunately, that
is not doable because relocation type definitions are spread into
multiple header files.
So I decided to use typedef. This still should be better than the
plain uint32_t because the intended type is now obvious.
llvm-svn: 315525
"Commands" was ambiguous because in the linker script, everything is
a command. We used to handle only SECTIONS commands, and at the time,
it might make sense to call them the commands, but it is no longer
the case. We handle not only SECTIONS but also MEMORY, PHDRS, VERSION,
etc., and they are all commands.
llvm-svn: 315409
This fixes pr34301.
As the bug points out, we want to keep some relocations with undefined
weak symbols. This means that we cannot always claim that these
symbols are not preemptible as we do now.
Unfortunately, we cannot also just always claim that they are
preemptible. Doing so would, for example, cause us to try to create a
plt entry when we don't even have a dynamic symbol table.
What almost works is to say that weak undefined symbols are
preemptible if and only if we have a dynamic symbol table. Almost
because we don't want to fail the build trying to create a copy
relocation to a weak undefined.
llvm-svn: 313372