"Remove floating point computations form SpillPlacement.cpp."
These commits caused test failures in lencod on clang-native-arm-lnt.
I suspect these changes are only exposing an existing issue, but
reverting anyway to keep the bots passing while we investigate.
llvm-svn: 185447
This is dead code since PIC16 was removed in 2010. The result was an odd mix,
where some parts would carefully pass it along and others would assert it was
zero (most of the object streamer for example).
llvm-svn: 185436
Fixes some cases where we were using full 64-bit division for (sdiv i32, i32)
and (sdiv i64, i32).
The "32" in "SDIVREM32" just refers to the second operand. The first operand
of all *DIVREM*s is a GR128.
llvm-svn: 185435
Try to use MVC when spilling the destination of a simple load or the source
of a simple store. As explained in the comment, this doesn't yet handle
the case where the load or store location is also a frame index, since
that could lead to two simultaneous scavenger spills, something the
backend can't handle yet. spill-02.py tests that this restriction kicks in,
but unfortunately I've not yet found a case that would fail without it.
The volatile trick I used for other scavenger tests doesn't work here
because we can't use MVC for volatile accesses anyway.
I'm planning on relaxing the restriction later, hopefully with a test
that does trigger the problem...
Tests @f8 and @f9 also showed that L(G)RL and ST(G)RL were wrongly
classified as SimpleBDX{Load,Store}. It wouldn't be easy to test for
that bug separately, which is why I didn't split out the fix as a
separate patch.
llvm-svn: 185434
This is the first use of D(L,B) addressing, which required a fair bit
of surgery. For that reason, the patch just adds the instruction
definition and the associated assembler and disassembler support.
A later patch will actually make use of it for codegen.
llvm-svn: 185433
r182680 replaced CountLeadingZeros_32 with a template function
countLeadingZeros that relies on using the correct argument type to give
the right result. The type passed in the XCore backend after this
revision was incorrect in a couple of places.
Patch by Robert Lytton.
llvm-svn: 185430
According to ARM EHABI section 9.2, if the
__aeabi_unwind_cpp_pr1() or __aeabi_unwind_cpp_pr2() is
used, then the handler data must be emitted after the unwind
opcodes. The handler data consists of several words, and
should be terminated by zero.
In case that the .handlerdata directive is not specified by
the programmer, we should emit zero to terminate the handler
data.
llvm-svn: 185422
DAGCombiner was counting all uses of a load node when considering whether it's
worth combining into a zextload. Really, it wants to ignore the chain and just
count real uses.
rdar://problem/13896307
llvm-svn: 185419
I'm reverting this commit because:
1. As discussed during review, it needs to be rewritten (to avoid creating and
then deleting instructions).
2. This is causing optimizer crashes. Specifically, I'm seeing things like
this:
While deleting: i1 %
Use still stuck around after Def is destroyed: <badref> = select i1 <badref>, i32 0, i32 1
opt: /src/llvm-trunk/lib/IR/Value.cpp:79: virtual llvm::Value::~Value(): Assertion `use_empty() && "Uses remain when a value is destroyed!"' failed.
I'd guess that these will go away once we're no longer creating/deleting
instructions here, but just in case, I'm adding a regression test.
Because the code is bring rewritten, I've just XFAIL'd the original regression test. Original commit message:
InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms
Real world code sometimes has the denominator of a 'udiv' be a
'select'. LLVM can handle such cases but only when the 'select'
operands are symmetric in structure (both select operands are a constant
power of two or a left shift, etc.). This falls apart if we are dealt a
'udiv' where the code is not symetric or if the select operands lead us
to more select instructions.
Instead, we should treat the LHS and each select operand as a distinct
divide operation and try to optimize them independently. If we can
to simplify each operation, then we can replace the 'udiv' with, say, a
'lshr' that has a new select with a bunch of new operands for the
select.
llvm-svn: 185415
There are a couple of (small) related changes here:
1. The printed name of the VRSAVE register has been changed from VRsave to
vrsave in order to match the name accepted by GNU binutils.
2. Support for parsing vrsave has been added to the asm parser (it seems that
there was no test case specifically covering this code, so I've added one).
3. The list of Altivec registers, which was common to all calling conventions,
has been separated out. This allows us to define the base CSR lists, and then
lists for each ABI with Altivec included. This allows SjLj, for example, to
work correctly on non-Altivec targets without using unnatural definitions of
the NoRegs CSR list.
4. VRSAVE is now always reserved on non-Darwin targets and all Altivec
registers are reserved when Altivec is disabled.
With these changes, it is now possible to compile a function containing
__builtin_unwind_init() on Linux/PPC64 with debugging information. This did not
work previously because GNU binutils assumes that all .cfi_offset offsets will
be 8-byte aligned on PPC64 (and errors out if you provide a non-8-byte-aligned
offset). This is not true for the vrsave register, however, because this
register is used only on Darwin, GCC does not bother printing a .cfi_offset
entry for it (even though there is a slot in the stack frame for it as
specified by the ABI). This change allows us to do the same: we will also not
print .cfi_offset directives for vrsave.
llvm-svn: 185409
Add missing parenthesis such that all and not only the very first attribute
is checked.
Testing this piece of code is not possible with an LLVM-IR test file, as the
LLVM-IR parser has a similar check such that the wrong IR does not even arrive
at the verifier.
llvm-svn: 185408
This adds support for TLS data relocations and modifiers:
.quad target@dtpmod
.quad target@tprel
.quad target@dtprel
Currently exploited by the asm parser only.
llvm-svn: 185394
Patch by Benjamin Kramer!
Use the BlockFrequency class instead of floats in the Hopfield network
computations. This rescales the node Bias field from a [-2;2] float
range to two block frequencies BiasN and BiasP pulling in opposite
directions. This construct has a more predictable behavior when block
frequencies saturate.
The per-node scaling factors are no longer necessary, assuming the block
frequencies around a bundle are consistent.
This patch can cause the register allocator to make different spilling
decisions. The differences should be small.
llvm-svn: 185393
Restrict the current TLS support to X86 ELF for now. Test that we don't
produce it on PPC & we can flesh that test case out with the right thing
once someone implements it.
llvm-svn: 185389
"Writing an LLVM Compiler Backend" can be misinterpreted as meaning
"backend" in the sense of "using LLVM as a backend for your compiler for
your new language". This new name is less ambiguous.
As a bonus, this brings the title in line with the file name.
llvm-svn: 185377
Create a dedicated register class for floating point condition code registers and
move FCC0 from register class CCR to the new register class.
llvm-svn: 185373
When phis get lowered, destination copies are inserted using an iterator that is
determined once for all phis in the block, which BuildMI interprets as a request
to insert an instruction directly before the iterator. In the case of a cyclic
phi, source copies may also be inserted directly before this iterator, which can
cause source copies to be inserted before destination copies. The fix is to keep
an iterator to the last phi and then advance it while lowering each phi in order
to insert destination copies directly after the phis.
llvm-svn: 185363
Although you can't generate this from C on PPC64, if you have a loop using a
64-bit counter on PPC32 then you can't form a CTR-based loop for it. This had
been cauing the PPCCTRLoops pass to assert.
Thanks to Joerg Sonnenberger for providing a test case!
llvm-svn: 185361
According to the AArch64 ELF specification (4.6.8), it's the
assembler's responsibility to make sure the shift amount is correct in
relocated MOVZ/MOVK instructions.
This wasn't being obeyed by either the MCJIT CodeGen or RuntimeDyldELF
(which happened to work out well for JIT tests). This commit should
make us compliant in this area.
llvm-svn: 185360
(2) Rename llvm-cov test inputs so the string "llvm-cov" doesn't get
substituted by lit within the input filenames on the RUN line.
(3) XFAIL llvm-cov.test because it asserts:
include/llvm/ADT/SmallVector.h:140: reference llvm::SmallVectorTemplateCommon<llvm::GCOVBlock *, void>::operator[](unsigned int) [T = llvm::GCOVBlock *]: Assertion `begin() + idx < end()' failed.
llvm-svn: 185358
Turns out I'd misread the architecture reference manual and thought
that was a load/store-store barrier, when it's not.
Thanks for pointing it out Eli!
llvm-svn: 185356
A @got reference must always result in a relocation, so that
the linker has a chance to set up the GOT entry, even if the
symbol happens to be local.
Add a PPCELFObjectWriter::ExplicitRelSym routine that enforces
a relocation to be emitted for GOT references.
llvm-svn: 185353