a watchpoint for either the variable encapsulated by SBValue (Watch) or the pointee
encapsulated by SBValue (WatchPointee).
Removed SBFrame::WatchValue() and SBFrame::WatchLocation() API as a result of that.
Modified the watchpoint related test suite to reflect the change.
Plus replacing WatchpointLocation with Watchpoint throughout the code base.
There are still cleanups to be dome. This patch passes the whole test suite.
Check it in so that we aggressively catch regressions.
llvm-svn: 141925
SymbolFIle (it was done mostly in the BreakpointResolverName resolver before.) Then
tailor our searches to the way the indexed maps are laid out. This removes a bunch
of test case failures using indexed dSYM's.
llvm-svn: 141428
from lldbutil.py to the lldb.py proper. The in_range() function becomes a function in
the lldb module. And the symbol_iter() function becomes a method within the SBModule
called symbol_in_section_iter(). Example:
# Iterates the text section and prints each symbols within each sub-section.
for subsec in text_sec:
print INDENT + repr(subsec)
for sym in exe_module.symbol_in_section_iter(subsec):
print INDENT2 + repr(sym)
print INDENT2 + 'symbol type: %s' % symbol_type_to_str(sym.GetType())
might produce this following output:
[0x0000000100001780-0x0000000100001d5c) a.out.__TEXT.__text
id = {0x00000004}, name = 'mask_access(MaskAction, unsigned int)', range = [0x00000001000017c0-0x0000000100001870)
symbol type: code
id = {0x00000008}, name = 'thread_func(void*)', range = [0x0000000100001870-0x00000001000019b0)
symbol type: code
id = {0x0000000c}, name = 'main', range = [0x00000001000019b0-0x0000000100001d5c)
symbol type: code
id = {0x00000023}, name = 'start', address = 0x0000000100001780
symbol type: code
[0x0000000100001d5c-0x0000000100001da4) a.out.__TEXT.__stubs
id = {0x00000024}, name = '__stack_chk_fail', range = [0x0000000100001d5c-0x0000000100001d62)
symbol type: trampoline
id = {0x00000028}, name = 'exit', range = [0x0000000100001d62-0x0000000100001d68)
symbol type: trampoline
id = {0x00000029}, name = 'fflush', range = [0x0000000100001d68-0x0000000100001d6e)
symbol type: trampoline
id = {0x0000002a}, name = 'fgets', range = [0x0000000100001d6e-0x0000000100001d74)
symbol type: trampoline
id = {0x0000002b}, name = 'printf', range = [0x0000000100001d74-0x0000000100001d7a)
symbol type: trampoline
id = {0x0000002c}, name = 'pthread_create', range = [0x0000000100001d7a-0x0000000100001d80)
symbol type: trampoline
id = {0x0000002d}, name = 'pthread_join', range = [0x0000000100001d80-0x0000000100001d86)
symbol type: trampoline
id = {0x0000002e}, name = 'pthread_mutex_lock', range = [0x0000000100001d86-0x0000000100001d8c)
symbol type: trampoline
id = {0x0000002f}, name = 'pthread_mutex_unlock', range = [0x0000000100001d8c-0x0000000100001d92)
symbol type: trampoline
id = {0x00000030}, name = 'rand', range = [0x0000000100001d92-0x0000000100001d98)
symbol type: trampoline
id = {0x00000031}, name = 'strtoul', range = [0x0000000100001d98-0x0000000100001d9e)
symbol type: trampoline
id = {0x00000032}, name = 'usleep', range = [0x0000000100001d9e-0x0000000100001da4)
symbol type: trampoline
[0x0000000100001da4-0x0000000100001e2c) a.out.__TEXT.__stub_helper
[0x0000000100001e2c-0x0000000100001f10) a.out.__TEXT.__cstring
[0x0000000100001f10-0x0000000100001f68) a.out.__TEXT.__unwind_info
[0x0000000100001f68-0x0000000100001ff8) a.out.__TEXT.__eh_frame
llvm-svn: 140830
In particular, it iterates through the executable module's SBSections, looking for the
'__TEXT' section and further iterates on its subsections (of SBSection type, too).
llvm-svn: 140654
Also add rich comparison methods (__eq__ and __ne__) for SBWatchpointLocation.
Modify TestWatchpointLocationIter.py to exercise the new APIs.
Add fuzz testings for the recently added SBTarget APIs related to watchpoint manipulations.
llvm-svn: 140633
to the Python interface.
Implement yet another (threre're 3 now) iterator protocol for SBTarget: watchpoint_location_iter(),
to iterate on the available watchpoint locations. And add a print representation for
SBWatchpointLocation.
Exercise some of these Python API with TestWatchpointLocationIter.py.
llvm-svn: 140595
- New SBSection objects that are object file sections which can be accessed
through the SBModule classes. You can get the number of sections, get a
section at index, and find a section by name.
- SBSections can contain subsections (first find "__TEXT" on darwin, then
us the resulting SBSection to find "__text" sub section).
- Set load addresses for a SBSection in the SBTarget interface
- Set the load addresses of all SBSection in a SBModule in the SBTarget interface
- Add a new module the an existing target in the SBTarget interface
- Get a SBSection from a SBAddress object
This should get us a lot closer to being able to symbolicate using LLDB through
the public API.
llvm-svn: 140437
set a watchpoint Pythonically. If the find-and-watch-a-variable operation
fails, an invalid SBValue is returned, instead.
Example Python usage:
value = frame0.WatchValue('global',
lldb.eValueTypeVariableGlobal,
lldb.LLDB_WATCH_TYPE_READ|lldb.LLDB_WATCH_TYPE_WRITE)
Add TestSetWatchpoint.py to exercise this API.
We have 400 test cases now.
llvm-svn: 140436
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
test cases in TestThreadAPI.py by decorating it with @expectedFailureClang.
Example:
@expectedFailureClang
@python_api_test
def test_step_over_3_times_with_dwarf(self):
"""Test Python SBThread.StepOver() API."""
# We build a different executable than the default buildDwarf() does.
d = {'CXX_SOURCES': 'main2.cpp', 'EXE': self.exe_name}
self.buildDwarf(dictionary=d)
self.setTearDownCleanup(dictionary=d)
self.step_over_3_times(self.exe_name)
llvm-svn: 138019
Add code to test case to create an evil linked list with:
task_evil -> task_2 -> task_3 -> task_evil ...
and to check that the linked list iterator only iterates 3 times.
llvm-svn: 137291
where an empty linked list is represented as a value object with a NULL value, instead of a special value
object which 'points' to NULL.
Also modifies the test case to comply.
rdar://problem/9933692
llvm-svn: 137289
SBTypeList does not have IsValid() method defined. It's always valid in a sense.
So the Python's truth value testing in turn delegates to __len__() method, which
is defined for SBTypeList, and returns 0.
llvm-svn: 136985
Add the rich comparison methods (__eq__, __ne__) to SBType, too.
o lldbtest.py:
Add debug utility method TestBase.DebugSBType().
o test/python_api/type:
Add tests for exercising SBType/SBTypeList API, including the SBTarget.FindTypes(type_name)
API which returns a SBTypeList matching the type_name.
llvm-svn: 136975
And remove expectedFailure decorator for test_SBTypeMember, which no longer exists after the recent changes, replace
it with test_SBTypeList.
llvm-svn: 136947
the SBType implementation classes.
Fixed LLDB core and the test suite to not use deprecated SBValue APIs.
Added a few new APIs to SBValue:
int64_t
SBValue::GetValueAsSigned(int64_t fail_value=0);
uint64_t
SBValue::GetValueAsUnsigned(uint64_t fail_value=0)
llvm-svn: 136829
The test driver now takes an option "+b" which enables to run just the benchmarks tests.
By default, tests decorated with the @benchmarks_test decorator do not get run.
Add an example benchmarks test directory which contains nothing for the time being,
just to demonstrate the @benchmarks_test concept.
For example,
$ ./dotest.py -v benchmarks
...
----------------------------------------------------------------------
Collected 2 tests
1: test_with_gdb (TestRepeatedExprs.RepeatedExprssCase)
Test repeated expressions with gdb. ... skipped 'benchmarks tests'
2: test_with_lldb (TestRepeatedExprs.RepeatedExprssCase)
Test repeated expressions with lldb. ... skipped 'benchmarks tests'
----------------------------------------------------------------------
Ran 2 tests in 0.047s
OK (skipped=2)
$ ./dotest.py -v +b benchmarks
...
----------------------------------------------------------------------
Collected 2 tests
1: test_with_gdb (TestRepeatedExprs.RepeatedExprssCase)
Test repeated expressions with gdb. ... running test_with_gdb
benchmarks result for test_with_gdb
ok
2: test_with_lldb (TestRepeatedExprs.RepeatedExprssCase)
Test repeated expressions with lldb. ... running test_with_lldb
benchmarks result for test_with_lldb
ok
----------------------------------------------------------------------
Ran 2 tests in 0.270s
OK
Also mark some Python API tests which are missing the @python_api_test decorator.
llvm-svn: 136553
- Completely new implementation of SBType
- Various enhancements in several other classes
Python synthetic children providers for std::vector<T>, std::list<T> and std::map<K,V>:
- these return the actual elements into the container as the children of the container
- basic template name parsing that works (hopefully) on both Clang and GCC
- find them in examples/synthetic and in the test suite in functionalities/data-formatter/data-formatter-python-synth
New summary string token ${svar :
- the syntax is just the same as in ${var but this new token lets you read the values
coming from the synthetic children provider instead of the actual children
- Python providers above provide a synthetic child len that returns the number of elements
into the container
Full bug fix for the issue in which getting byte size for a non-complete type would crash LLDB
Several other fixes, including:
- inverted the order of arguments in the ClangASTType constructor
- EvaluationPoint now only returns SharedPointer's to Target and Process
- the help text for several type subcommands now correctly indicates argument-less options as such
llvm-svn: 136504
end of list test function as __eol_test__.
The simple example can be reduced to:
for t in task_head.linked_list_iter('next'):
print t
Modify the test program to exercise the API for both cases: supplying or not
supplying an end of list test function.
llvm-svn: 136144
too complex in the test case. We can just simply test that the SBValue object
is a valid object and it does not correspond to a null pointer in order to say
that EOL has not been reached.
Modify the test case and the lldb.py docstring to have a more compact test
function.
llvm-svn: 136123
to iterate through an SBValue instance by treating it as the head of a linked
list. API program must provide two args to the linked_list_iter() method:
the first being the child member name which points to the next item on the list
and the second being a Python function which an SBValue (for the next item) and
returns True if end of list is reached, otherwise it returns False.
For example, suppose we have the following sample program.
#include <stdio.h>
class Task {
public:
int id;
Task *next;
Task(int i, Task *n):
id(i),
next(n)
{}
};
int main (int argc, char const *argv[])
{
Task *task_head = new Task(-1, NULL);
Task *task1 = new Task(1, NULL);
Task *task2 = new Task(2, NULL);
Task *task3 = new Task(3, NULL); // Orphaned.
Task *task4 = new Task(4, NULL);
Task *task5 = new Task(5, NULL);
task_head->next = task1;
task1->next = task2;
task2->next = task4;
task4->next = task5;
int total = 0; // Break at this line
Task *t = task_head;
while (t != NULL) {
if (t->id >= 0)
++total;
t = t->next;
}
printf("We have a total number of %d tasks\n", total);
return 0;
}
The test program produces the following output while exercising the linked_list_iter() SBVAlue API:
task_head:
TypeName -> Task *
ByteSize -> 8
NumChildren -> 2
Value -> 0x0000000106400380
ValueType -> local_variable
Summary -> None
IsPointerType -> True
Location -> 0x00007fff65f06e60
(Task *) next = 0x0000000106400390
(int) id = 1
(Task *) next = 0x00000001064003a0
(Task *) next = 0x00000001064003a0
(int) id = 2
(Task *) next = 0x00000001064003c0
(Task *) next = 0x00000001064003c0
(int) id = 4
(Task *) next = 0x00000001064003d0
(Task *) next = 0x00000001064003d0
(int) id = 5
(Task *) next = 0x0000000000000000
llvm-svn: 135938
API.
SBTarget changes include changing:
bool
SBTarget::ResolveLoadAddress (lldb::addr_t vm_addr,
lldb::SBAddress& addr);
to be:
lldb::SBAddress
SBTarget::ResolveLoadAddress (lldb::addr_t vm_addr);
SBAddress can how contruct itself using a load address and a target
which can be used to resolve the address:
SBAddress (lldb::addr_t load_addr, lldb::SBTarget &target);
This will actually just call the new SetLoadAddress accessor:
void
SetLoadAddress (lldb::addr_t load_addr,
lldb::SBTarget &target);
This function will always succeed in making a SBAddress object
that can be used in API calls (even if "target" isn't valid).
If "target" is valid and there are sections currently loaded,
then it will resolve the address to a section offset address if
it can. Else an address with a NULL section and an offset that is
the "load_addr" that was passed in. We do this because a load address
might be from the heap or stack.
llvm-svn: 135770
represent pointers and arrays by adding an extra parameter to the
SBValue
SBValue::GetChildAtIndex (uint32_t idx,
DynamicValueType use_dynamic,
bool can_create_synthetic);
The new "can_create_synthetic" will allow you to create child values that
aren't actually a part of the original type. So if you code like:
int *foo_ptr = ...
And you have a SBValue that contains the value for "foo_ptr":
SBValue foo_value = ...
You can now get the "foo_ptr[12]" item by doing this:
v = foo_value.GetChiltAtIndex (12, lldb.eNoDynamicValues, True);
Normall the "foo_value" would only have one child value (an integer), but
we can create "synthetic" child values by treating the pointer as an array.
Likewise if you have code like:
int array[2];
array_value = ....
v = array_value.GetChiltAtIndex (0); // Success, v will be valid
v = array_value.GetChiltAtIndex (1); // Success, v will be valid
v = array_value.GetChiltAtIndex (2); // Fail, v won't be valid, "2" is not a valid zero based index in "array"
But if you use the ability to create synthetic children:
v = array_value.GetChiltAtIndex (0, lldb.eNoDynamicValues, True); // Success, v will be valid
v = array_value.GetChiltAtIndex (1, lldb.eNoDynamicValues, True); // Success, v will be valid
v = array_value.GetChiltAtIndex (2, lldb.eNoDynamicValues, True); // Success, v will be valid
llvm-svn: 135292
clang/gcc/llvm-gcc. If the first breakpoint is due to stop at an inlined
frame, test that the call site corresponds to where it should be. Also add
an expecr for a second break stop, if the first break stop corresponds to an
inlined call frame #0.
rdar://problem/9741470
llvm-svn: 135100
is just wrong and resulted in the inferior's output getting mixed into the GDB remote communication's
log file. Change all test cases to not pass os.ctermid() and either use SBTarget.LaunchSimple() or
SBTarget.Launch() and pass None as stdin_path/stdout_path/srderr_path to use a pseudo terminal.
rdar://problem/9716499 program output is getting mixed into the GDB remote communications
llvm-svn: 134940
before issuing API calls to find the global variable and to get its value.
rdar://problem/9700873 has been updated to reflect the latest status. The dwarf case
now does not seg fault if the inferior is not started; instead, for dwarf case, the
value retrieved from the global variable is None.
llvm-svn: 134909
Add a usage example of SBEvent APIs.
o SBEvent.h and SBListener.h:
Add method docstrings for SBEvent.h and SBListener.h, and example usage of SBEvent into
the class docstring of SBEvent.
o lldb.swig:
Add typemap for SBEvent::SBEvent (uint32_t event, const char *cstr, uint32_t cstr_len)
so that we can use, in Python, obj2 = lldb.SBEvent(0, "abc") to create an SBEvent.
llvm-svn: 134766
Fixed crashes for SBValue fuzz calls.
And change 'bool SBType::IsPointerType(void)' to
'bool SBType::IsAPointerType(void)' to avoid name collision with the static 'bool SBType::IsPointerType(void *)'
function, which SWIG cannot handle.
llvm-svn: 134096
Assign the test method name to self.testMethodName. This can be useful for the
test directory (see test/types for a good example) which houses a bunch of executables
compiled from different source files. The default build action is to create a.out as
the binary executable, which can confuse the module cacheing mechanism and result in
the debugger getting a stale image as the target to be debugged, and chaos ensues.
o AbstractBase.py, TestThreadAPI.py:
Use self.testMethodName to our advantage.
o TestLoadUnload.py:
Add expected failure marker to test case test_modules_search_paths().
llvm-svn: 133768
after initial construction.
There are two exceptions to the above general rules, though; the API objects are
SBCommadnReturnObject and SBStream.
llvm-svn: 133475
For the print_stacktrace(thread, string_buffer = False) function, if we have debug info
for a frame function, let's also emit the args for the current function.
o TestFrameUtils.py:
Add stronger assertTrue for frame0's args.
o TestPrintStackTraces.py:
Launch the inferior with ["abc", "xyz"] and expect '(int)argc=3' in the stack traces, since
by design the inferior is built with debug info.
llvm-svn: 133204
If two SBAddress's have the same module and file address, they are considered equal.
Add a test snippet 'sa1 == sa2' to exercise the rich comparison methods for SBAddress.
llvm-svn: 132807
those lldb objects which implement the IsValid() method, let's change the rest of
the test suite to use the more compact truth value testing pattern (the Python way).
llvm-svn: 131970
object.__nonzero__(self) is called to implement truth value testing and the built-in operation bool(),
via a simple delegation to self.IsValid().
Change tests under python_api/lldbutil to utilize this mechanism.
llvm-svn: 131494
unambiguous iteration support. So that we could, for example:
...
REGs = lldbutil.get_GPRs(frame)
print "Number of general purpose registers: %d" % len(REGs)
for reg in REGs:
print "%s => %s" %(reg.GetName(), reg.GetValue())
...
llvm-svn: 131418
o get_parent_frame(frame)
o get_args_as_string(frame)
to lldbutil.py and create TestFrameUtils.py to exercise the utils.
Plus re-arrange the test/python_api/lldbutil to have three directories
for testing iteration, process stack traces, and the just added frame utils.
llvm-svn: 131213
Also add three convenience functions get_GPRs(frame), get_FPRs(frame), and get_ESRs(frame) to get the general
purpose registers, the floating point registers, and the exception state registers.
Add TestRegistersIterator.py to test these added functions of lldbutil.py.
llvm-svn: 131144
the breakpoint ID and provides the semantics needed for '==' and '!='. And
modify LLDBIteratorTestCase.lldb_iter_2() to use '==' between two SBBreakpoint's.
llvm-svn: 130531
This is so that the objects which support the iteration protocol are immediately obvious
from looking at the lldb.py file.
SBTarget supports two types of iterations: module and breakpoint. For an SBTarget instance,
you will need to issue either:
for m in target.module_iter()
or
for b in target.breakpoint_iter()
For other single iteration protocol objects, just use, for example:
for thread in process:
ID = thread.GetThreadID()
for frame in thread:
frame.Disassemble()
....
llvm-svn: 130442
method names of all the lldb container objects and returns an iterator object when
passed an eligible lldb container object.
Example:
from lldb_util import smart_iter
for thread in smart_iter(process):
ID = thread.GetThreadID()
if thread.GetStopReason() == lldb.eStopReasonBreakpoint:
stopped_due_to_breakpoint = True
for frame in smart_iter(thread):
self.assertTrue(frame.GetThread().GetThreadID() == ID)
...
Add a test case for lldb.smart_iter().
llvm-svn: 130332
i.e., with 'SBStream &description' first, followed by 'DescriptionLevel level'.
Modify lldbutil.py so that get_description() for a target or breakpoint location
can just take the lldb object itself without specifying an option to mean option
lldb.eDescriptionLevelBrief. Modify TestTargetAPI.py to exercise this logic path.
llvm-svn: 130147