Commit Graph

43 Commits

Author SHA1 Message Date
gysit f345f7e30b [mlir][OpDSL] Support pointwise ops with rank zero inputs.
Allow pointwise operations to take rank zero input tensors similarly to scalar inputs. Use an empty indexing map to broadcast rank zero tensors to the iteration domain of the operation.

Depends On D120734

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D120807
2022-03-08 17:39:47 +00:00
gysit d629645fcd [mlir][OpDSL] Add support for adding canonicalization patterns.
Extend OpDSL with a `defines` method that can set the `hasCanonicalizer` flag for an OpDSL operation. If the flag is set via `defines(Canonicalizer)` the operation needs to implement the `getCanonicalizationPatterns` method. The revision specifies the flag for linalg.fill_tensor and adds an empty `FillTensorOp::getCanonicalizationPatterns` implementation.

This revision is a preparation step to replace linalg.fill by its OpDSL counterpart linalg.fill_tensor. The two are only functionally equivalent if both specify the same canonicalization patterns. The revision is thus a prerequisite for the linalg.fill replacement.

Depends On D120725

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D120726
2022-03-08 15:56:59 +00:00
Lorenzo Chelini b204ce0ca8 [MLIR][OpDSL] Silence warning (NFC) 2022-03-08 08:33:17 +01:00
River Riddle 9eaff42360 [mlir][NFC] Move Parser.h to Parser/
There is no reason for this file to be at the top-level, and
its current placement predates the Parser/ folder's existence.

Differential Revision: https://reviews.llvm.org/D121024
2022-03-07 01:05:38 -08:00
gysit 24357fec8d [mlir][OpDSL] Add arithmetic function attributes.
The revision extends OpDSL with unary and binary function attributes. A function attribute, makes the operations used in the body of a structured operation configurable. For example, a pooling operation may take an aggregation function attribute that specifies if the op shall implement a min or a max pooling. The goal of this revision is to define less and more flexible operations.

We may thus for example define an element wise op:
```
linalg.elem(lhs, rhs, outs=[out], op=BinaryFn.mul)
```
If the op argument is not set the default operation is used.

Depends On D120109

Reviewed By: nicolasvasilache, aartbik

Differential Revision: https://reviews.llvm.org/D120110
2022-03-01 07:45:47 +00:00
gysit cd2776b0d5 [mlir][OpDSL] Split arithmetic functions.
Split arithmetic function into unary and binary functions. The revision prepares the introduction of unary and binary function attributes that work similar to type function attributes.

Depends On D120108

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D120109
2022-02-25 15:27:42 +00:00
gysit 4d4cb17da8 [mlir][OpDSL] Refactor function handling.
Prepare the OpDSL function handling to introduce more function classes. A follow up commit will split ArithFn into UnaryFn and BinaryFn. This revision prepares the split by adding a function kind enum to handle different function types using a single class on the various levels of the stack (for example, there is now one TensorFn and one ScalarFn).

Depends On D119718

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D120108
2022-02-25 15:05:32 +00:00
gysit 51fdd802c7 [mlir][OpDSL] Add type function attributes.
Previously, OpDSL operation used hardcoded type conversion operations (cast or cast_unsigned). Supporting signed and unsigned casts thus meant implementing two different operations. Type function attributes allow us to define a single operation that has a cast type function attribute which at operation instantiation time may be set to cast or cast_unsigned. We may for example, defina a matmul operation with a cast argument:

```
@linalg_structured_op
def matmul(A=TensorDef(T1, S.M, S.K), B=TensorDef(T2, S.K, S.N), C=TensorDef(U, S.M, S.N, output=True),
    cast=TypeFnAttrDef(default=TypeFn.cast)):
  C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n])
```

When instantiating the operation the attribute may be set to the desired cast function:

```
linalg.matmul(lhs, rhs, outs=[out], cast=TypeFn.cast_unsigned)
```

The revsion introduces a enum in the Linalg dialect that maps one-by-one to the type functions defined by OpDSL.

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D119718
2022-02-25 08:25:23 +00:00
gysit 348bfc8e50 [mlir][linalg] Add attributes to region builder (NFC).
Adapt the region builder signature to hand in the attributes of the created ops. The revision is a preparation step the support named ops that need access to the operation attributes during op creation.

Depends On D119692

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D119693
2022-02-14 13:14:14 +00:00
gysit d50571ab07 [mlir][OpDSL] Add default value to index attributes.
Index attributes had no default value, which means the attribute values had to be set on the operation. This revision adds a default parameter to `IndexAttrDef`. After the change, every index attribute has to define a default value. For example, we may define the following strides attribute:
```

```
When using the operation the default stride is used if the strides attribute is not set. The mechanism is implemented using `DefaultValuedAttr`.

Additionally, the revision uses the naming index attribute instead of attribute more consistently, which is a preparation for follow up revisions that will introduce function attributes.

Depends On D119125

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D119126
2022-02-14 12:14:12 +00:00
gysit a3655de2c8 [mlir][OpDSL] Add support for basic rank polymorphism.
Previously, OpDSL did not support rank polymorphism, which required a separate implementation of linalg.fill. This revision extends OpDSL to support rank polymorphism for a limited class of operations that access only scalars and tensors of rank zero. At operation instantiation time, it scales these scalar computations to multi-dimensional pointwise computations by replacing the empty indexing maps with identity index maps. The revision does not change the DSL itself, instead it adapts the Python emitter and the YAML generator to generate different indexing maps and and iterators depending on the rank of the first output.

Additionally, the revision introduces a `linalg.fill_tensor` operation that in a future revision shall replace the current handwritten `linalg.fill` operation. `linalg.fill_tensor` is thus only temporarily available and will be renamed to `linalg.fill`.

Reviewed By: nicolasvasilache, stellaraccident

Differential Revision: https://reviews.llvm.org/D119003
2022-02-11 08:27:49 +00:00
River Riddle 2418cd92c0 [mlir] Update uses of `parser`/`printer` ODS op field to `hasCustomAssemblyFormat`
The parser/printer fields are deprecated and in the process of being removed.
2022-02-07 19:03:58 -08:00
gysit cf05668c17 [mlir][OpDSL] Rename `PrimFn` to `ArithFn`.
The revision renames `PrimFn` to `ArithFn`. The name resembles the newly introduced arith dialect that implements most of the arithmetic functions. An exception are log/exp that are part of the math dialect.

Depends On D115239

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D115240
2022-01-07 12:38:03 +00:00
gysit 15757ea80a [mlir][OpDSL] Add `TypeFn` class.
This revision introduces a the `TypeFn` class that similar to the `PrimFn` class contains an extensible set of type conversion functions. Having the same mechanism for both type conversion functions and arithmetic functions improves code consistency. Additionally, having an explicit function class and function name is a prerequisite to specify a conversion or arithmetic function via attribute. In a follow up commits, we will introduce function attributes to make OpDSL operations more generic. In particular, the goal is to handle signed and unsigned computation in one operations. Today, there is a linalg.matmul and a linalg.matmul_unsigned.

The commit implements the following changes:
- Introduce the class of type conversion functions `TypeFn`
- Replace the hardwired cast and cast_unsigned ops by the `TypeFn` counterparts
- Adapt the python and C++ code generation paths to support the new cast operations

Example:
```
cast(U, A[D.m, D.k])
```
changes to
```
TypeFn.cast(U, A[D.m, D.k])
```

Depends On D115237

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D115239
2022-01-07 12:26:47 +00:00
Mehdi Amini 89de9cc8a7 Apply clang-tidy fixes for performance-for-range-copy to MLIR (NFC)
Differential Revision: https://reviews.llvm.org/D116248
2022-01-02 01:13:42 +00:00
Kazu Hirata 63846a634d [mlir] Remove unused "using" (NFC)
Identified by misc-unused-using-decls.
2022-01-01 09:14:19 -08:00
Mehdi Amini 02b6fb218e Fix clang-tidy issues in mlir/ (NFC)
Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D115956
2021-12-20 20:25:01 +00:00
River Riddle 195730a650 [mlir][NFC] Replace references to Identifier with StringAttr
This is part of the replacement of Identifier with StringAttr.

Differential Revision: https://reviews.llvm.org/D113953
2021-11-16 17:36:26 +00:00
River Riddle ae40d62541 [mlir] Refactor ElementsAttr's value access API
There are several aspects of the API that either aren't easy to use, or are
deceptively easy to do the wrong thing. The main change of this commit
is to remove all of the `getValue<T>`/`getFlatValue<T>` from ElementsAttr
and instead provide operator[] methods on the ranges returned by
`getValues<T>`. This provides a much more convenient API for the value
ranges. It also removes the easy-to-be-inefficient nature of
getValue/getFlatValue, which under the hood would construct a new range for
the type `T`. Constructing a range is not necessarily cheap in all cases, and
could lead to very poor performance if used within a loop; i.e. if you were to
naively write something like:

```
DenseElementsAttr attr = ...;
for (int i = 0; i < size; ++i) {
  // We are internally rebuilding the APFloat value range on each iteration!!
  APFloat it = attr.getFlatValue<APFloat>(i);
}
```

Differential Revision: https://reviews.llvm.org/D113229
2021-11-09 00:15:08 +00:00
Tobias Gysi eaa52750ce [mlir][linalg] Verify every LinalgOp has a body.
After removing the last LinalgOps that have no region attached we can verify there is a region. The patch performs the following changes:
- Move the SingleBlockImplicitTerminator trait further up the the structured op base class.
- Adapt the LinalgOp verification since the trait only check if there is 0 or 1 block.
- Introduce a getBlock method on the LinalgOp interface.
- Access the LinalgOp body using either getBlock() or getBody() if the concrete operation type is known.

This patch is a follow up to https://reviews.llvm.org/D111233.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D111393
2021-10-14 09:08:39 +00:00
Tobias Gysi 3fe7fe4424 [mlir][linalg] Add unsigned min/max/cast function to OpDSL.
Update OpDSL to support unsigned integers by adding unsigned min/max/cast signatures. Add tests in OpDSL and on the C++ side to verify the proper signed and unsigned operations are emitted.

The patch addresses an issue brought up in https://reviews.llvm.org/D111170.

Reviewed By: rsuderman

Differential Revision: https://reviews.llvm.org/D111230
2021-10-07 06:27:20 +00:00
MaheshRavishankar 4aeeb91a92 [mlir][Linalg] Allow all build methods of Structured ops to specify additional attributes.
Differential Revision: https://reviews.llvm.org/D108338
2021-08-23 13:06:34 -07:00
MaheshRavishankar 16ffb283c5 Revert "[mlir][Linalg] Allow all build methods of Structured ops to specify additional attributes."
This reverts commit 95ddc8341a.

Differential Revision: https://reviews.llvm.org/D108396
2021-08-19 11:53:41 -07:00
MaheshRavishankar 95ddc8341a [mlir][Linalg] Allow all build methods of Structured ops to specify additional attributes.
Differential Revision: https://reviews.llvm.org/D108338
2021-08-19 11:14:35 -07:00
Tobias Gysi 234c4d2362 [mlir][linalg] Set result types in all builders.
Add code to set the result types in all yaml op builders.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D108273
2021-08-19 06:19:12 +00:00
MaheshRavishankar 836649e040 Allow setting attributes in build method generated by YAML-gen.
Reviewed By: gysit

Differential Revision: https://reviews.llvm.org/D108182
2021-08-17 09:09:52 -07:00
Tobias Gysi bbf4436a82 [mlir][linalg] Remove the StructuredOp capture mechanism.
After https://reviews.llvm.org/D104109, structured ops support scalar inputs. As a result, the capture mechanism meant to pass non-shaped parameters got redundant. The patch removes the capture semantics after the FillOp migrated to use scalar operands https://reviews.llvm.org/D104121.

Differential Revision: https://reviews.llvm.org/D104785
2021-06-28 07:57:40 +00:00
Tobias Gysi 25bb616490 [mlir][linalg][python] Add attribute support to the YAML codegen.
Extend the yaml code generation to support the index attributes that https://reviews.llvm.org/D104711 added to the OpDSL.

Differential Revision: https://reviews.llvm.org/D104712
2021-06-24 12:33:48 +00:00
Tobias Gysi ff2ef4d684 [mlir][linalg] Adapt yaml codegen to support scalar parameters.
The patch updates the C++ yaml code generation to support scalar operands as added in https://reviews.llvm.org/D104220.

Differential Revision: https://reviews.llvm.org/D104224
2021-06-15 15:20:48 +00:00
River Riddle 66e2708205 [mlir:Linalg] Populate LinalgOp patterns on LinalgDialect as opposed to each op
Interface patterns are unique in that they get added to every operation that also implements that interface, given that they aren't tied to individual operations. When the same interface pattern gets added to multiple operations (such as the current behavior with Linalg), an reference to each of these patterns is added to every op (meaning that an operation will now have N references to effectively the same pattern). This revision fixes this problematic behavior in Linalg, and can bring upwards of a 25% reduction in compile time in Linalg based workloads.

Differential Revision: https://reviews.llvm.org/D104160
2021-06-14 11:20:15 -07:00
Tobias Gysi 67b1c37d9f [mlir][linalg] Cleanup left over uses of deprecated LinalgOp methods.
Replace all remaining uses of deprecated Structured Op Interface methods. This patch is based on https://reviews.llvm.org/D103394.

Differential Revision: https://reviews.llvm.org/D103673
2021-06-04 08:48:02 +00:00
Nicolas Vasilache 4519ca3d2e [mlir][Linalg] NFC - Drop Linalg EDSC usage
Drop the Linalg dialect EDSC subdirectory and update all uses.

Differential Revision: https://reviews.llvm.org/D102848
2021-05-20 15:33:56 +00:00
Tobias Gysi 99a198641c [mlir][Python][linalg] Fix to limit size of SmallVector.
Stack allocate at most two ScalarAssign elements. Using the default number of inlined elements triggered a static assert in some setups (https://reviews.llvm.org/D102075).

Differential Revision: https://reviews.llvm.org/D102827
2021-05-20 07:24:41 +00:00
Tobias Gysi 9a2769db80 [mir][Python][linalg] Support OpDSL extensions in C++.
The patch extends the yaml code generation to support the following new OpDSL constructs:
- captures
- constants
- iteration index accesses
- predefined types
These changes have been introduced by revision
https://reviews.llvm.org/D101364.

Differential Revision: https://reviews.llvm.org/D102075
2021-05-19 13:36:56 +00:00
River Riddle 76f3c2f3f3 [mlir][Pattern] Add better support for using interfaces/traits to match root operations in rewrite patterns
To match an interface or trait, users currently have to use the `MatchAny` tag. This tag can be quite problematic for compile time for things like the canonicalizer, as the `MatchAny` patterns may get applied to  *every* operation. This revision adds better support by bucketing interface/trait patterns based on which registered operations have them registered. This means that moving forward we will only attempt to match these patterns to operations that have this interface registered. Two simplify defining patterns that match traits and interfaces, two new utility classes have been added: OpTraitRewritePattern and OpInterfaceRewritePattern.

Differential Revision: https://reviews.llvm.org/D98986
2021-03-23 14:05:33 -07:00
Chris Lattner dc4e913be9 [PatternMatch] Big mechanical rename OwningRewritePatternList -> RewritePatternSet and insert -> add. NFC
This doesn't change APIs, this just cleans up the many in-tree uses of these
names to use the new preferred names.  We'll keep the old names around for a
couple weeks to help transitions.

Differential Revision: https://reviews.llvm.org/D99127
2021-03-22 17:20:50 -07:00
Alex Zinenko 32c49c7d73 [mlir] ODS: change OpBuilderDAG to OpBuilder
We no longer have the non-DAG version.

Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D97856
2021-03-04 10:55:02 +01:00
Stella Laurenzo d36a15de1f [mlir][linalg] Memoize indexing map generation.
Differential Revision: https://reviews.llvm.org/D97602
2021-03-01 21:15:40 -08:00
Stella Stamenova 801067f4c0 [mlir][lldb] Fix several gcc warnings in mlir and lldb
These warnings are raised when compiling with gcc due to either having too few or too many commas, or in the case of lldb, the possibility of a nullptr.

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D97586
2021-03-01 13:48:22 -08:00
Stella Laurenzo 2ceedc3a20 [mlir][linalg] Add symbolic type conversion to linalg named ops.
This enables this kind of construct in the DSL to generate a named op that is polymorphic over numeric type variables `T` and `U`, generating the correct arithmetic casts at construction time:

```
@tc_def_op
def polymorphic_matmul(A=TensorDef(T1, S.M, S.K),
                       B=TensorDef(T2, S.K, S.N),
                       C=TensorDef(U, S.M, S.N, output=True)):
  implements(ContractionOpInterface)
  C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n])
```

Presently, this only supports type variables that are bound to the element type of one of the arguments, although a further extension that allows binding a type variable to an attribute would allow some more expressiveness and may be useful for some formulations. This is left to a future patch. In addition, this patch does not yet materialize the verifier support which ensures that types are bound correctly (for such simple examples, failing to do so will yield IR that fails verification, it just won't yet fail with a precise error).

Note that the full grid of extensions/truncation/int<->float conversions are supported, but many of them are lossy and higher level code needs to be mindful of numerics (it is not the job of this level).

As-is, this should be sufficient for most integer matmul scenarios we work with in typical quantization schemes.

Differential Revision: https://reviews.llvm.org/D97603
2021-02-27 15:52:35 -08:00
Stella Laurenzo 5867c18e2c [mlir][linalg] Generate additional interfaces for named ops.
* Adds ContractionOpInterface to polymorphic_matmul.

Differential Revision: https://reviews.llvm.org/D97601
2021-02-27 15:43:41 -08:00
River Riddle e6260ad043 [mlir] Simplify various pieces of code now that Identifier has access to the Context/Dialect
This also exposed a bug in Dialect loading where it was not correctly identifying identifiers that had the dialect namespace as a prefix.

Differential Revision: https://reviews.llvm.org/D97431
2021-02-26 18:00:05 -08:00
Stella Laurenzo 6c9541d4dd Implement simple type polymorphism for linalg named ops.
* It was decided that this was the end of the line for the existing custom tc parser/generator, and this is the first step to replacing it with a declarative format that maps well to mathy source languages.
* One such source language is implemented here: https://github.com/stellaraccident/mlir-linalgpy/blob/main/samples/mm.py
  * In fact, this is the exact source of the declarative `polymorphic_matmul` in this change.
  * I am working separately to clean this python implementation up and add it to MLIR (probably as `mlir.tools.linalg_opgen` or equiv). The scope of the python side is greater than just generating named ops: the ops are callable and directly emit `linalg.generic` ops fully dynamically, and this is intended to be a feature for frontends like npcomp to define custom linear algebra ops at runtime.
* There is more work required to handle full type polymorphism, especially with respect to integer formulations, since they require more specificity wrt types.
* Followups to this change will bring the new generator to feature parity with the current one and delete the current. Roughly, this involves adding support for interface declarations and attribute symbol bindings.

Differential Revision: https://reviews.llvm.org/D97135
2021-02-21 14:30:31 -08:00