Reapply with an explicit check for multi-edges, as the expected
behavior of multi-edge dominance is unclear (D120811).
-----
For conditional branches, we know the value is i1 0 or i1 1 along
the outgoing edges. For switches we can apply exactly the same
optimization, just with the known values determined by the switch
cases.
For conditional branches, we know the value is i1 0 or i1 1 along
the outgoing edges. For switches we can apply exactly the same
optimization, just with the known values determined by the switch
cases.
This transform can still be applied if there are more than two
phi inputs, as long as phi inputs with the same value are dominated
by the same idom edge.
Rather than checking that the type is the same (which is always
the case, given how these are part of the same phi) check that the
source element type is the same. With opaque pointers, this is no
longer implied.
Before this change, InstCombine was willing to fold atomic and
non-atomic loads through a PHI node as long as the first PHI argument
is not an atomic load. The combined load would be non-atomic, which is
incorrect.
Fix this by only combining the loads in a PHI node when all of the
arguments are non-atomic loads.
Thanks to Eli Friedman for pointing out the bug at
https://github.com/llvm/llvm-project/issues/50777#issuecomment-981045342!
Fixes#50777
Differential Revision: https://reviews.llvm.org/D115113
Uppercase some variable names, per LLVM coding standards. This change
intentionally does not rename every miscased variable, as a follow-up
change ( D116086 ) intends to eliminate many of those by switching
loops to range for loops.
Differential Revision: https://reviews.llvm.org/D118553
The inttoptr/ptrtoint roundtrip optimization is not always correct.
We are working towards removing this optimization and adding support to specific cases where this optimization works.
In this patch, we focus on phi-node operands with inttoptr casts.
We know that ptrtoint( inttoptr( ptrtoint x) ) is same as ptrtoint (x).
So, we want to remove this roundtrip cast which goes through phi-node.
Reviewed By: aqjune
Differential Revision: https://reviews.llvm.org/D106289
This tries to bail out if the PHI is in a `catchswitch` BB in
InstCombine. A PHI cannot be combined into a non-PHI instruction if it
is in a `catchswitch` BB, because `catchswitch` BB cannot have any
non-PHI instruction other than `catchswitch` itself.
The given test case started crashing after D98058.
Reviewed By: lebedev.ri, rnk
Differential Revision: https://reviews.llvm.org/D105309
This patch updates InstCombine to use poison constant to represent the resulting value of (either semantically or syntactically) unreachable instrs, or a don't-care value of an unreachable store instruction.
This allows more aggressive folding of unused results, as shown in llvm/test/Transforms/InstCombine/getelementptr.ll .
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D104602
If the incoming values of a phi are pointer casts of the same original
value, replace the phi with a single cast. Such redundant phis are
somewhat common after loop-rotate and removing them can avoid some
unnecessary code bloat, e.g. because an iteration of a loop is peeled
off to make the phi invariant. It should also simplify further analysis
on its own.
InstCombine already uses stripPointerCasts in a couple of places and
also simplifies phis based on the incoming values, so the patch should
fit in the existing scope.
The patch causes binary changes in 47 out of 237 benchmarks in
MultiSource/SPEC2000/SPEC2006 with -O3 -flto on X86.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D98058
The IR/MIR pseudo probe intrinsics don't get materialized into real machine instructions and therefore they don't incur runtime cost directly. However, they come with indirect cost by blocking certain optimizations. Some of the blocking are intentional (such as blocking code merge) for better counts quality while the others are accidental. This change unblocks perf-critical optimizations that do not affect counts quality. They include:
1. IR InstCombine, sinking load operation to shorten lifetimes.
2. MIR LiveRangeShrink, similar to #1
3. MIR TwoAddressInstructionPass, i.e, opeq transform
4. MIR function argument copy elision
5. IR stack protection. (though not perf-critical but nice to have).
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D95982
The original take 1 was 6102310d81,
which taught InstSimplify to do that, which seemed better at time,
since we got EarlyCSE support for free.
However, it was proven that we can not do that there,
the simplified-to PHI would not be reachable from the original PHI,
and that is not something InstSimplify is allowed to do,
as noted in the commit ed90f15efb
that reverted it:
> It appears to cause compilation non-determinism and caused stage3 mismatches.
Then there was take 2 3e69871ab5,
which was InstCombine-specific, but it again showed stage2-stage3 differences,
and reverted in bdaa3f86a0.
This is quite alarming.
Here, let's try to change how we find existing PHI candidate:
due to the worklist order, and the way PHI nodes are inserted
(it may be inserted as the first one, or maybe not), let's look at *all*
PHI nodes in the block.
Effects on vanilla llvm test-suite + RawSpeed:
```
| statistic name | baseline | proposed | Δ | % | \|%\| |
|----------------------------------------------------|-----------|-----------|-------:|---------:|---------:|
| asm-printer.EmittedInsts | 7942329 | 7942457 | 128 | 0.00% | 0.00% |
| assembler.ObjectBytes | 254295632 | 254312480 | 16848 | 0.01% | 0.01% |
| correlated-value-propagation.NumPhis | 18412 | 18347 | -65 | -0.35% | 0.35% |
| early-cse.NumCSE | 2183283 | 2183267 | -16 | 0.00% | 0.00% |
| early-cse.NumSimplify | 550105 | 541842 | -8263 | -1.50% | 1.50% |
| instcombine.NumAggregateReconstructionsSimplified | 73 | 4506 | 4433 | 6072.60% | 6072.60% |
| instcombine.NumCombined | 3640311 | 3644419 | 4108 | 0.11% | 0.11% |
| instcombine.NumDeadInst | 1778204 | 1783205 | 5001 | 0.28% | 0.28% |
| instcombine.NumPHICSEs | 0 | 22490 | 22490 | 0.00% | 0.00% |
| instcombine.NumWorklistIterations | 2023272 | 2024400 | 1128 | 0.06% | 0.06% |
| instcount.NumCallInst | 1758395 | 1758802 | 407 | 0.02% | 0.02% |
| instcount.NumInvokeInst | 59478 | 59502 | 24 | 0.04% | 0.04% |
| instcount.NumPHIInst | 330557 | 330545 | -12 | 0.00% | 0.00% |
| instcount.TotalBlocks | 1077138 | 1077220 | 82 | 0.01% | 0.01% |
| instcount.TotalFuncs | 101442 | 101441 | -1 | 0.00% | 0.00% |
| instcount.TotalInsts | 8831946 | 8832606 | 660 | 0.01% | 0.01% |
| simplifycfg.NumHoistCommonCode | 24186 | 24187 | 1 | 0.00% | 0.00% |
| simplifycfg.NumInvokes | 4300 | 4410 | 110 | 2.56% | 2.56% |
| simplifycfg.NumSimpl | 1019813 | 999767 | -20046 | -1.97% | 1.97% |
```
So it fires 22490 times, which is less than ~24k the take 1 did,
but more than what take 2 did (22228 times)
.
It allows foldAggregateConstructionIntoAggregateReuse() to actually work
after PHI-of-extractvalue folds did their thing. Previously SimplifyCFG
would have done this PHI CSE, of all places. Additionally, allows some
more `invoke`->`call` folds to happen (+110, +2.56%).
All in all, expectedly, this catches less things overall,
but all the motivational cases are still caught, so all good.
While the original variant with doing this in InstSimplify (rightfully)
caused questions and ultimately was detected to be a culprit
of stage2-stage3 mismatch, it was expected that
InstCombine-based implementation would be fine.
But apparently it's not, as
http://lab.llvm.org:8011/builders/clang-with-thin-lto-ubuntu/builds/24095/steps/compare-compilers/logs/stdio
suggests.
Which suggests that somewhere in InstCombine there is a loop
over nondeterministically sorted container, which causes
different worklist ordering.
This reverts commit 3e69871ab5.
The original take was 6102310d81,
which taught InstSimplify to do that, which seemed better at time,
since we got EarlyCSE support for free.
However, it was proven that we can not do that there,
the simplified-to PHI would not be reachable from the original PHI,
and that is not something InstSimplify is allowed to do,
as noted in the commit ed90f15efb
that reverted it :
> It appears to cause compilation non-determinism and caused stage3 mismatches.
However InstCombine already does many different optimizations,
so it should be a safe place to do it here.
Note that we still can't just compare incoming values ranges,
because there is no guarantee that these PHI's we'd simplify to
were already re-visited and sorted.
However coming up with a test is problematic.
Effects on vanilla llvm test-suite + RawSpeed:
```
| statistic name | baseline | proposed | Δ | % | |%| |
|----------------------------------------------------|-----------|-----------|-------:|---------:|---------:|
| instcombine.NumPHICSEs | 0 | 22228 | 22228 | 0.00% | 0.00% |
| asm-printer.EmittedInsts | 7942329 | 7942456 | 127 | 0.00% | 0.00% |
| assembler.ObjectBytes | 254295632 | 254313792 | 18160 | 0.01% | 0.01% |
| early-cse.NumCSE | 2183283 | 2183272 | -11 | 0.00% | 0.00% |
| early-cse.NumSimplify | 550105 | 541842 | -8263 | -1.50% | 1.50% |
| instcombine.NumAggregateReconstructionsSimplified | 73 | 4506 | 4433 | 6072.60% | 6072.60% |
| instcombine.NumCombined | 3640311 | 3666911 | 26600 | 0.73% | 0.73% |
| instcombine.NumDeadInst | 1778204 | 1783318 | 5114 | 0.29% | 0.29% |
| instcount.NumCallInst | 1758395 | 1758804 | 409 | 0.02% | 0.02% |
| instcount.NumInvokeInst | 59478 | 59502 | 24 | 0.04% | 0.04% |
| instcount.NumPHIInst | 330557 | 330549 | -8 | 0.00% | 0.00% |
| instcount.TotalBlocks | 1077138 | 1077221 | 83 | 0.01% | 0.01% |
| instcount.TotalFuncs | 101442 | 101441 | -1 | 0.00% | 0.00% |
| instcount.TotalInsts | 8831946 | 8832611 | 665 | 0.01% | 0.01% |
| simplifycfg.NumInvokes | 4300 | 4410 | 110 | 2.56% | 2.56% |
| simplifycfg.NumSimpl | 1019813 | 999740 | -20073 | -1.97% | 1.97% |
```
So it fires ~22k times, which is less than ~24k the take 1 did.
It allows foldAggregateConstructionIntoAggregateReuse() to actually work
after PHI-of-extractvalue folds did their thing. Previously SimplifyCFG
would have done this PHI CSE, of all places. Additionally, allows some
more `invoke`->`call` folds to happen (+110, +2.56%).
All in all, expectedly, this catches less things overall,
but all the motivational cases are still caught, so all good.
As FIXME said, they really should be checking for a single user,
not use, so let's do that. It is not *that* unusual to have
the same value as incoming value in a PHI node, not unlike
how a PHI may have the same incoming basic block more than once.
There isn't a nice way to do that, Value::users() isn't uniqified,
and Value only tracks it's uses, not Users, so the check is
potentially costly since it does indeed potentially involes
traversing the entire use list of a value.
While since D86306 we do it's sibling fold for `insertvalue`,
we should also do this for `extractvalue`'s.
And unlike that one, the results here are, quite honestly, shocking,
as it can be observed here on vanilla llvm test-suite + RawSpeed results:
```
| statistic name | baseline | proposed | Δ | % | |%| |
|----------------------------------------------------|-----------|-----------|--------:|--------:|-------:|
| asm-printer.EmittedInsts | 7945095 | 7942507 | -2588 | -0.03% | 0.03% |
| assembler.ObjectBytes | 273209920 | 273069800 | -140120 | -0.05% | 0.05% |
| early-cse.NumCSE | 2183363 | 2183398 | 35 | 0.00% | 0.00% |
| early-cse.NumSimplify | 541847 | 550017 | 8170 | 1.51% | 1.51% |
| instcombine.NumAggregateReconstructionsSimplified | 2139 | 108 | -2031 | -94.95% | 94.95% |
| instcombine.NumCombined | 3601364 | 3635448 | 34084 | 0.95% | 0.95% |
| instcombine.NumConstProp | 27153 | 27157 | 4 | 0.01% | 0.01% |
| instcombine.NumDeadInst | 1694521 | 1765022 | 70501 | 4.16% | 4.16% |
| instcombine.NumPHIsOfExtractValues | 0 | 37546 | 37546 | 0.00% | 0.00% |
| instcombine.NumSunkInst | 63158 | 63686 | 528 | 0.84% | 0.84% |
| instcount.NumBrInst | 874304 | 871857 | -2447 | -0.28% | 0.28% |
| instcount.NumCallInst | 1757657 | 1758402 | 745 | 0.04% | 0.04% |
| instcount.NumExtractValueInst | 45623 | 11483 | -34140 | -74.83% | 74.83% |
| instcount.NumInsertValueInst | 4983 | 580 | -4403 | -88.36% | 88.36% |
| instcount.NumInvokeInst | 61018 | 59478 | -1540 | -2.52% | 2.52% |
| instcount.NumLandingPadInst | 35334 | 34215 | -1119 | -3.17% | 3.17% |
| instcount.NumPHIInst | 344428 | 331116 | -13312 | -3.86% | 3.86% |
| instcount.NumRetInst | 100773 | 100772 | -1 | 0.00% | 0.00% |
| instcount.TotalBlocks | 1081154 | 1077166 | -3988 | -0.37% | 0.37% |
| instcount.TotalFuncs | 101443 | 101442 | -1 | 0.00% | 0.00% |
| instcount.TotalInsts | 8890201 | 8833747 | -56454 | -0.64% | 0.64% |
| instsimplify.NumSimplified | 75822 | 75707 | -115 | -0.15% | 0.15% |
| simplifycfg.NumHoistCommonCode | 24203 | 24197 | -6 | -0.02% | 0.02% |
| simplifycfg.NumHoistCommonInstrs | 48201 | 48195 | -6 | -0.01% | 0.01% |
| simplifycfg.NumInvokes | 2785 | 4298 | 1513 | 54.33% | 54.33% |
| simplifycfg.NumSimpl | 997332 | 1018189 | 20857 | 2.09% | 2.09% |
| simplifycfg.NumSinkCommonCode | 7088 | 6464 | -624 | -8.80% | 8.80% |
| simplifycfg.NumSinkCommonInstrs | 15117 | 14021 | -1096 | -7.25% | 7.25% |
```
... which tells us that this new fold fires whopping 38k times,
increasing the amount of SimplifyCFG's `invoke`->`call` transforms by +54% (+1513) (again, D85787 did that last time),
decreasing total instruction count by -0.64% (-56454),
and sharply decreasing count of `insertvalue`'s (-88.36%, i.e. 9 times less)
and `extractvalue`'s (-74.83%, i.e. four times less).
This causes geomean -0.01% binary size decrease
http://llvm-compile-time-tracker.com/compare.php?from=4d5ca22b8adfb6643466e4e9f48ba14bb48938bc&to=97dacca0111cb2ae678204e52a3cee00e3a69208&stat=size-text
and, ignoring `O0-g`, is a geomean -0.01%..-0.05% compile-time improvement
http://llvm-compile-time-tracker.com/compare.php?from=4d5ca22b8adfb6643466e4e9f48ba14bb48938bc&to=97dacca0111cb2ae678204e52a3cee00e3a69208&stat=instructions
The other thing that tells is, is that while this is a massive win for `invoke`->`call` transform
`InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse()` fold,
which is supposed to be dealing with such aggregate reconstructions,
fires a lot less now. There are two reasons why:
1. After this fold, as it can be seen in tests, we may (will) end up with trivially redundant PHI nodes.
We don't CSE them in InstCombine presently, which means that EarlyCSE needs to run and then InstCombine rerun.
2. But then, EarlyCSE not only manages to fold such redundant PHI's,
it also sees that the extract-insert chain recreates the original aggregate,
and replaces it with the original aggregate.
The take-aways are
1. We maybe should do most trivial, same-BB PHI CSE in InstCombine
2. I need to check if what other patterns remain, and how they can be resolved.
(i.e. i wonder if `foldAggregateConstructionIntoAggregateReuse()` might go away)
This is a reland of the original commit fcb51d8c24,
because originally i forgot to ensure that the base aggregate types match.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D86530
This reverts commit fcb51d8c24.
As buildbots report, there's apparently some missing check to ensure
that the types of incoming values match the type of PHI.
Let's revert for a moment.
While since D86306 we do it's sibling fold for `insertvalue`,
we should also do this for `extractvalue`'s.
And unlike that one, the results here are, quite honestly, shocking,
as it can be observed here on vanilla llvm test-suite + RawSpeed results:
```
| statistic name | baseline | proposed | Δ | % | |%| |
|----------------------------------------------------|-----------|-----------|--------:|--------:|-------:|
| asm-printer.EmittedInsts | 7945095 | 7942507 | -2588 | -0.03% | 0.03% |
| assembler.ObjectBytes | 273209920 | 273069800 | -140120 | -0.05% | 0.05% |
| early-cse.NumCSE | 2183363 | 2183398 | 35 | 0.00% | 0.00% |
| early-cse.NumSimplify | 541847 | 550017 | 8170 | 1.51% | 1.51% |
| instcombine.NumAggregateReconstructionsSimplified | 2139 | 108 | -2031 | -94.95% | 94.95% |
| instcombine.NumCombined | 3601364 | 3635448 | 34084 | 0.95% | 0.95% |
| instcombine.NumConstProp | 27153 | 27157 | 4 | 0.01% | 0.01% |
| instcombine.NumDeadInst | 1694521 | 1765022 | 70501 | 4.16% | 4.16% |
| instcombine.NumPHIsOfExtractValues | 0 | 37546 | 37546 | 0.00% | 0.00% |
| instcombine.NumSunkInst | 63158 | 63686 | 528 | 0.84% | 0.84% |
| instcount.NumBrInst | 874304 | 871857 | -2447 | -0.28% | 0.28% |
| instcount.NumCallInst | 1757657 | 1758402 | 745 | 0.04% | 0.04% |
| instcount.NumExtractValueInst | 45623 | 11483 | -34140 | -74.83% | 74.83% |
| instcount.NumInsertValueInst | 4983 | 580 | -4403 | -88.36% | 88.36% |
| instcount.NumInvokeInst | 61018 | 59478 | -1540 | -2.52% | 2.52% |
| instcount.NumLandingPadInst | 35334 | 34215 | -1119 | -3.17% | 3.17% |
| instcount.NumPHIInst | 344428 | 331116 | -13312 | -3.86% | 3.86% |
| instcount.NumRetInst | 100773 | 100772 | -1 | 0.00% | 0.00% |
| instcount.TotalBlocks | 1081154 | 1077166 | -3988 | -0.37% | 0.37% |
| instcount.TotalFuncs | 101443 | 101442 | -1 | 0.00% | 0.00% |
| instcount.TotalInsts | 8890201 | 8833747 | -56454 | -0.64% | 0.64% |
| instsimplify.NumSimplified | 75822 | 75707 | -115 | -0.15% | 0.15% |
| simplifycfg.NumHoistCommonCode | 24203 | 24197 | -6 | -0.02% | 0.02% |
| simplifycfg.NumHoistCommonInstrs | 48201 | 48195 | -6 | -0.01% | 0.01% |
| simplifycfg.NumInvokes | 2785 | 4298 | 1513 | 54.33% | 54.33% |
| simplifycfg.NumSimpl | 997332 | 1018189 | 20857 | 2.09% | 2.09% |
| simplifycfg.NumSinkCommonCode | 7088 | 6464 | -624 | -8.80% | 8.80% |
| simplifycfg.NumSinkCommonInstrs | 15117 | 14021 | -1096 | -7.25% | 7.25% |
```
... which tells us that this new fold fires whopping 38k times,
increasing the amount of SimplifyCFG's `invoke`->`call` transforms by +54% (+1513) (again, D85787 did that last time),
decreasing total instruction count by -0.64% (-56454),
and sharply decreasing count of `insertvalue`'s (-88.36%, i.e. 9 times less)
and `extractvalue`'s (-74.83%, i.e. four times less).
This causes geomean -0.01% binary size decrease
http://llvm-compile-time-tracker.com/compare.php?from=4d5ca22b8adfb6643466e4e9f48ba14bb48938bc&to=97dacca0111cb2ae678204e52a3cee00e3a69208&stat=size-text
and, ignoring `O0-g`, is a geomean -0.01%..-0.05% compile-time improvement
http://llvm-compile-time-tracker.com/compare.php?from=4d5ca22b8adfb6643466e4e9f48ba14bb48938bc&to=97dacca0111cb2ae678204e52a3cee00e3a69208&stat=instructions
The other thing that tells is, is that while this is a massive win for `invoke`->`call` transform
`InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse()` fold,
which is supposed to be dealing with such aggregate reconstructions,
fires a lot less now. There are two reasons why:
1. After this fold, as it can be seen in tests, we may (will) end up with trivially redundant PHI nodes.
We don't CSE them in InstCombine presently, which means that EarlyCSE needs to run and then InstCombine rerun.
2. But then, EarlyCSE not only manages to fold such redundant PHI's,
it also sees that the extract-insert chain recreates the original aggregate,
and replaces it with the original aggregate.
The take-aways are
1. We maybe should do most trivial, same-BB PHI CSE in InstCombine
2. I need to check if what other patterns remain, and how they can be resolved.
(i.e. i wonder if `foldAggregateConstructionIntoAggregateReuse()` might go away)
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D86530
For a long time, the InstCombine pass handled target specific
intrinsics. Having target specific code in general passes was noted as
an area for improvement for a long time.
D81728 moves most target specific code out of the InstCombine pass.
Applying the target specific combinations in an extra pass would
probably result in inferior optimizations compared to the current
fixed-point iteration, therefore the InstCombine pass resorts to newly
introduced functions in the TargetTransformInfo when it encounters
unknown intrinsics.
The patch should not have any effect on generated code (under the
assumption that code never uses intrinsics from a foreign target).
This introduces three new functions:
TargetTransformInfo::instCombineIntrinsic
TargetTransformInfo::simplifyDemandedUseBitsIntrinsic
TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic
A few target specific parts are left in the InstCombine folder, where
it makes sense to share code. The largest left-over part in
InstCombineCalls.cpp is the code shared between arm and aarch64.
This allows to move about 3000 lines out from InstCombine to the targets.
Differential Revision: https://reviews.llvm.org/D81728
This patch adds simplification for pattern:
```
if (cond)
/ \
... ...
\ /
p = phi [true] [false]
...
br p, succ_1, succ_2
```
If we can prove that top block's branches dominate respective
inputs of a block that has a Phi with constant inputs, we can
use the branch condition (maybe inverted) instead of Phi.
This will make proofs of implication for further jump threading
more transparent.
Differential Revision: https://reviews.llvm.org/D81375
Reviewed By: xbolva00
The fact that loads and stores can have the alignment missing is a
constant source of confusion: code that usually works can break down in
rare cases. So fix the LoadInst API so the alignment is never missing.
To reduce the number of changes required to make this work, IRBuilder
and certain LoadInst constructors will grab the module's datalayout and
compute the alignment automatically. This is the same alignment
instcombine would eventually apply anyway; we're just doing it earlier.
There's a minor risk that the way we're retrieving the datalayout
could break out-of-tree code, but I don't think that's likely.
This is the last in a series of patches, so most of the necessary
changes have already been merged.
Differential Revision: https://reviews.llvm.org/D77454
getFirstInsertionPt's return value must be checked for validity before
casting it to Instruction*. Don't attempt to insert casts after a phi in
a catchswitch block.
Fixes PR45033, introduced in D37832.
Reviewed By: davidxl, hfinkel
Differential Revision: https://reviews.llvm.org/D75381
getFirstNonPHI iterates over all the instructions in a block until it
finds a non-PHI.
Then, the loop starts from the beginning of the block and goes through
all the instructions until it reaches the instruction found by
getFirstNonPHI.
Instead of doing that, just stop when a non-PHI is found.
This reduces the compile-time of a test case discussed in
https://reviews.llvm.org/D47023 by 13x.
Not entirely sure how to come up with a test case for this since it's a
compile time issue that would significantly slow down running the tests.
Differential Revision: https://reviews.llvm.org/D70016
This is a resubmission of bbb29738b5 that
was reverted due to clang tests failures. It includes the fix and
additional IR tests for the missed case.
Summary:
In case when all incoming values of a PHI are equal pointers, this
transformation inserts a definition of such a pointer right after
definition of the base pointer and replaces with this value both PHI and
all it's incoming pointers. Primary goal of this transformation is
canonicalization of this pattern in order to enable optimizations that
can't handle PHIs. Non-inbounds pointers aren't currently supported.
Reviewers: spatel, RKSimon, lebedev.ri, apilipenko
Reviewed By: apilipenko
Tags: #llvm
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D68128
In case when all incoming values of a PHI are equal pointers, this
transformation inserts a definition of such a pointer right after
definition of the base pointer and replaces with this value both PHI and
all it's incoming pointers. Primary goal of this transformation is
canonicalization of this pattern in order to enable optimizations that
can't handle PHIs. Non-inbounds pointers aren't currently supported.
Reviewers: spatel, RKSimon, lebedev.ri, apilipenko
Reviewed By: apilipenko
Tags: #llvm
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D68128
This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57172
llvm-svn: 352911
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
The current llvm.mem.parallel_loop_access metadata has a problem in that
it uses LoopIDs. LoopID unfortunately is not loop identifier. It is
neither unique (there's even a regression test assigning the some LoopID
to multiple loops; can otherwise happen if passes such as LoopVersioning
make copies of entire loops) nor persistent (every time a property is
removed/added from a LoopID's MDNode, it will also receive a new LoopID;
this happens e.g. when calling Loop::setLoopAlreadyUnrolled()).
Since most loop transformation passes change the loop attributes (even
if it just to mark that a loop should not be processed again as
llvm.loop.isvectorized does, for the versioned and unversioned loop),
the parallel access information is lost for any subsequent pass.
This patch unlinks LoopIDs and parallel accesses.
llvm.mem.parallel_loop_access metadata on instruction is replaced by
llvm.access.group metadata. llvm.access.group points to a distinct
MDNode with no operands (avoiding the problem to ever need to add/remove
operands), called "access group". Alternatively, it can point to a list
of access groups. The LoopID then has an attribute
llvm.loop.parallel_accesses with all the access groups that are parallel
(no dependencies carries by this loop).
This intentionally avoid any kind of "ID". Loops that are clones/have
their attributes modifies retain the llvm.loop.parallel_accesses
attribute. Access instructions that a cloned point to the same access
group. It is not necessary for each access to have it's own "ID" MDNode,
but those memory access instructions with the same behavior can be
grouped together.
The behavior of llvm.mem.parallel_loop_access is not changed by this
patch, but should be considered deprecated.
Differential Revision: https://reviews.llvm.org/D52116
llvm-svn: 349725
by `getTerminator()` calls instead be declared as `Instruction`.
This is the biggest remaining chunk of the usage of `getTerminator()`
that insists on the narrow type and so is an easy batch of updates.
Several files saw more extensive updates where this would cascade to
requiring API updates within the file to use `Instruction` instead of
`TerminatorInst`. All of these were trivial in nature (pervasively using
`Instruction` instead just worked).
llvm-svn: 344502
This is a bit awkward in a handful of places where we didn't even have
an instruction and now we have to see if we can build one. But on the
whole, this seems like a win and at worst a reasonable cost for removing
`TerminatorInst`.
All of this is part of the removal of `TerminatorInst` from the
`Instruction` type hierarchy.
llvm-svn: 340701